Все задачи на проверку формул. поэтому рисунки не строю.
1.В основании лежит правильный треугольник его периметр равен 3*2=6/см/, чтобы найти ребро призмы, надо площадь бок. поверхности разделить на периметр основания. 66/6=11/см/
2. Площадь боковой поверхности равна произведению периметра основания на высоту. Периметр основания 4*4=16/см/, значит, площадь бок. поверхности равна 16*12=192/см²/, площадь основания равна 4²=16/см²/
Площадь полной поверхности равна
sполн. =2sосн.+sбок.=2*16+192=32+192=224/см²/
3. по формуле для длины диагонали d=√(a²+b²+c²)
a=3; b=4; c=5.
d=√(3²+4²+5²)=√(9+16+25)=√50=5√2
площадь поверхности равна 2*(3*4+3*5+4*5)=2*(12+15+20)=94/см²/
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Все задачи на проверку формул. поэтому рисунки не строю.
1.В основании лежит правильный треугольник его периметр равен 3*2=6/см/, чтобы найти ребро призмы, надо площадь бок. поверхности разделить на периметр основания. 66/6=11/см/
2. Площадь боковой поверхности равна произведению периметра основания на высоту. Периметр основания 4*4=16/см/, значит, площадь бок. поверхности равна 16*12=192/см²/, площадь основания равна 4²=16/см²/
Площадь полной поверхности равна
sполн. =2sосн.+sбок.=2*16+192=32+192=224/см²/
3. по формуле для длины диагонали d=√(a²+b²+c²)
a=3; b=4; c=5.
d=√(3²+4²+5²)=√(9+16+25)=√50=5√2
площадь поверхности равна 2*(3*4+3*5+4*5)=2*(12+15+20)=94/см²/
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301