В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
ДарьяГ22
ДарьяГ22
20.01.2021 16:22 •  Геометрия

Около четырехугольника abcd можно описать окружность. точка p – основание перпендикуляра, опущенного из точки а на прямую вс, q – из а на dc, r – из d на ав и т – из d на вс. докажите, что точки p, q, r и t лежат на одной окружности. если можно, то и с чертежом.

Показать ответ
Ответ:
вика45890
вика45890
07.10.2020 07:24

 Достаточно доказать, что RPTQ – равнобокая трапеция. Четырёхугольник ARDQ – вписанный, поэтому  ∠RQD = ∠DAR.  Также, поскольку четырёхугольник ABCD  – вписанный, то  ∠BCD = 180° – ∠DAR.  Cледовательно,  ∠RQD + ∠BCD = 180°,  то есть прямые PT и RQ параллельны.

  Докажем теперь, что в трапеции RPTQ диагонали равны. Четырёхугольник APCQ вписан в окружность с диаметром AC, поэтому 
PQ = AC·sin∠BCD.  Aналогично,  RT = BD·sin∠ABC.  Но из вписанности четырёхугольника ABCD следует, что 
   Значит,  PQ = RT,  то есть трапеция – равнобокая.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота