Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите диаметр окружности, если AB=3, AC=6.
Площадь тр-ка равна половине произведения стороны тр-ка на высоту, опущенную на эту сторону, т.е. S=½*12*8=48 см кв. Согласно следствию из теоремы о средних линиях тр-ка, площадь тр-ка, образованного средними линиями, в 4 раза меньше площади исходного тр-ка, т.е. равна 12 см кв.
2. биссектрисы углов прямоугольника образуют углы 45°, поэтому тр-к ВКС - равнобедренный. Тр-к СДК - прямоугольный равнобедренный, поэтому КД=СД=6 см. Также находим, что АК=6 см. Значит АД=ВС=12 см. По т-ме Пифагора найдем, что СК=ВК=6√2 см. Найдем площадь тр-ка ВКС. S=½*АВ*СК*sin45=½*12*6√2*1/√2=36 см кв.
Рисунок к задаче оставлю ниже. Решение. Так как треугольник АВС равнобедренный по условию и ∠ABC = 120°, то ∠BAC = ∠BCA = (180°-120°)/2 = 30°. Так как CM - биссектриса треугольника АВС, то ∠MCA = ∠ BCM = 15°. Рассмотрим треугольник AMC. Из теоремы синусов: MC/sin30° = AM/sin15°. Выразим из пропорции длину стороны MC: MC = AM*sin30°/sin15° = 14*0,5/sin15° = 7/sin15° (см). Пусть MH - перпендикуляр, проведенный из точки М к прямой ВС. Отрезок MH - искомое расстояние. Рассмотрим треугольник МНС. ∠МНС = 90°, ∠НСМ = 15°. Выразим из этого треугольника длину катета МН: МН = MC*sin15° = 7*sin15°/sin15° = 7 (см). ответ: 7 см.
2. биссектрисы углов прямоугольника образуют углы 45°, поэтому тр-к ВКС - равнобедренный. Тр-к СДК - прямоугольный равнобедренный, поэтому КД=СД=6 см. Также находим, что АК=6 см. Значит АД=ВС=12 см. По т-ме Пифагора найдем, что СК=ВК=6√2 см. Найдем площадь тр-ка ВКС. S=½*АВ*СК*sin45=½*12*6√2*1/√2=36 см кв.
Решение. Так как треугольник АВС равнобедренный по условию и ∠ABC = 120°, то ∠BAC = ∠BCA = (180°-120°)/2 = 30°. Так как CM - биссектриса треугольника АВС, то ∠MCA = ∠ BCM = 15°.
Рассмотрим треугольник AMC. Из теоремы синусов: MC/sin30° = AM/sin15°. Выразим из пропорции длину стороны MC: MC = AM*sin30°/sin15° = 14*0,5/sin15° = 7/sin15° (см).
Пусть MH - перпендикуляр, проведенный из точки М к прямой ВС. Отрезок MH - искомое расстояние.
Рассмотрим треугольник МНС. ∠МНС = 90°, ∠НСМ = 15°. Выразим из этого треугольника длину катета МН: МН = MC*sin15° = 7*sin15°/sin15° = 7 (см).
ответ: 7 см.