Определи площадь треугольника NLT, если NT — 10 см, < N = 25, <L= 75 . S NLT = см (все приблизительные числа в расчётах и ответ округли до десятитысячных).
ол казир келеди 9 жарымда мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати
Объяснение:
кек алу керек кой 50 мыңға жуық адам қатысты мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен
неге басылмай жатыр деп балаларда жиі кездеседі деп аталады және ол казир келеди 9 жарымда мен екі күн бойы жотеледи мен Бахтыбай Іңкармын тәти мен айтсам болама
Две прямые лежат в одной плоскости, если смешанное произведение их направляющих векторов и третьего вектора, проведённого между двумя точками, лежащими на этих прямых, равно 0 . (При равенстве нулю смешанного произведения делаем вывод о компланарности трёх векторов.)
Из уравнения прямых можно выписать координаты направляющих векторов и координаты точек, лежащих на прямых .
ол казир келеди 9 жарымда мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати
Объяснение:
кек алу керек кой 50 мыңға жуық адам қатысты мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен
неге басылмай жатыр деп балаларда жиі кездеседі деп аталады және ол казир келеди 9 жарымда мен екі күн бойы жотеледи мен Бахтыбай Іңкармын тәти мен айтсам болама
Две прямые лежат в одной плоскости, если смешанное произведение их направляющих векторов и третьего вектора, проведённого между двумя точками, лежащими на этих прямых, равно 0 . (При равенстве нулю смешанного произведения делаем вывод о компланарности трёх векторов.)
Из уравнения прямых можно выписать координаты направляющих векторов и координаты точек, лежащих на прямых .
\begin{gathered}l_1:\; \frac{x-1}{2}=\frac{y+2}{-1}=\frac{z}{-2}\; \; ,\; \; \vec{s}_1=(2,-1,-2)\; ,\; \; M_1(1,-2,0) l_2:\; \frac{x+1}{1}=\frac{y+11}{2}=\frac{z+6}{1}\; \; ,\; \; \vec{s}_2=(1,2,1 )\; \; ,\; \; M_2(-1,-11,-6)overline {M_2M_1}=(1+1,-2+11,0+6)=(2,9,6)(\overline {M_2M_1},\vec{s}_1,\vec{s}_2)= \left|\begin{array}{ccc}2&9&6\\2&-1&-2\\1&2&1\end{array}\right|= 2(-1+2)-9(2+2)+6(4+1)=0\end{gathered}
l
1
:
2
x−1
=
−1
y+2
=
−2
z
,
s
1
=(2,−1,−2),M
1
(1,−2,0)
l
2
:
1
x+1
=
2
y+11
=
1
z+6
,
s
2
=(1,2,1),M
2
(−1,−11,−6)
M
2
M
1
=(1+1,−2+11,0+6)=(2,9,6)
(
M
2
M
1
,
s
1
,
s
2
)=
∣
∣
∣
∣
∣
∣
∣
2
2
1
9
−1
2
6
−2
1
∣
∣
∣
∣
∣
∣
∣
=2(−1+2)−9(2+2)+6(4+1)=0