Пусть ABCD - прямоугольная трапеция с прямым углом A. По условию, AD=20, BC=10. Проведём высоту CH из тупого угла C. Тогда ABCH - прямоугольник, значит, AH=BC=10. Отсюда следует, что DH=AD-AH=10. CDH - прямоугольный треугольник, в котором угол D равен 45 градусам (CD - большая боковая сторона трапеции). Значит, треугольник является равнобедренным прямоугольным, и его катеты равны, то есть, CH=HD=10. Таким образом, высота трапеции равна 10, тогда можно найти площадь, которая равна произведению высоты и полусуммы оснований - S=(20+10)/2*10=150.
Прямоугольник АВСД, треугольник АВД=треугольник АСД, АВ=СД, АД - общий (по двум катетам),АС=ВД, уголСАД=уголАСВ и уголАДВ=уголДВС как внутренние разносторонние. АД=ВС, треугольник АОД=треугольникВОС по стороне и прилежащим двум углам, АО=ОС=ВО=ОД, диагонали при пересечении делятся поополам Треугольники АОД= ВОС и АВО = СОД равнобедренные 2. треугольник АСД, уголСАД=30, АС=12, катетСД=1/2АС=12/2=6=АВ, уголВАС=уголАВС=90-30=60, уголАОВ=180-60-60=60, треугольник АОВ равносторонний, все углы 60,АВ=АО=ВО=6 , периметр=6*3=18
2. треугольник АСД, уголСАД=30, АС=12, катетСД=1/2АС=12/2=6=АВ, уголВАС=уголАВС=90-30=60, уголАОВ=180-60-60=60, треугольник АОВ равносторонний, все углы 60,АВ=АО=ВО=6 , периметр=6*3=18