Определите угол между прямой и плоскостью, если длина перпендикуляра, опущенного из точки прямой на плоскость равна 2√3 см, а длина проекции наклонной на данную плоскость равна 2 см.
т.О — центр описанной около ∆ АВС окружности, ч.т.д.
Объяснение:
В ∆ АОС углы при основании АС равны. Следовательно, ∆ АОС –равнобедренный, и АО=ОС.
В ∆ АОВ отрезок ОМ⊥АВ и делит её пополам. ⇒
ОМ высота и медиана ∆ АОВ. ⇒ ∆ АОВ — равнобедренный, и
АО=ОВ. Отрезки АО=ОВ=ОС
Точки А, В и С находятся на одном и том же расстоянии от О, следовательно, принадлежат окружности, так как ей принадлежит множество точек плоскости, находящихся на одном и том же расстоянии от одной точки, следовательно
т.О — центр описанной около ∆ АВС окружности, ч.т.д.
Объяснение:
В ∆ АОС углы при основании АС равны. Следовательно, ∆ АОС –равнобедренный, и АО=ОС.
В ∆ АОВ отрезок ОМ⊥АВ и делит её пополам. ⇒
ОМ высота и медиана ∆ АОВ. ⇒ ∆ АОВ — равнобедренный, и
АО=ОВ. Отрезки АО=ОВ=ОС
Точки А, В и С находятся на одном и том же расстоянии от О, следовательно, принадлежат окружности, так как ей принадлежит множество точек плоскости, находящихся на одном и том же расстоянии от одной точки, следовательно
(ответ сверху)
Для двух точек пространства A(3;1;-4) и B(2;4;3) координаты точки M(x;y;z) , которая делит отрезок в отношении λ=1/4, выражаются формулами:
Xm=(Xa+λ*Xb)/(1+λ),
Ym=(Ya+λ*Yb)/(1+λ),
Zm=(Za+λ*Zb)/(1+λ).
Найдем эти координаты:
Xm = (3+(1/4)*2)/(1+(1/4)) = (14/4):(5/4) = 14/5 = 2,8;
Ym = (1+(1/4)*4)/(1+(1/4)) = 2:(5/4) = 8/5 = 1,6;
Zm = (-4+(1/4)*3)/(1+(1/4)) = -(13/4):(5/4) = -13/5 = -2,6.
ответ: М(2,8:1,6:-3).Даны точки А(3;0) и точка B(-3;-1). Найти точку C, делящую AB в отношении 1:3.
в.отв:
-С(1;2)
-С(-4;3)
-С(4;1)
-С(0;-