На катетах прямоугольного треугольника, как на диаметрах, построены окружности. Найдите их общую хорду, если катеты равны 3 и 4.
————————
ответ: 2,4 (ед. длины)
Объяснение:
Пусть в треугольника АВС катеты АС=4, ВС=3, СН - общая хорда.
По т.Пифагора ( или из отношения катетов 3:4 - «египетский треугольник) находим гипотенузу АВ=5.
Хорда СН перпендикулярна гипотенузе, т.к. вписанные углы АНС и ВНС опираются на диаметры. Следовательно, СН - высота треугольника АВС. Её длину легко найти из площади ∆ АВС.
Пусть дан прямоугольный треугольник, в котором известны гипотенуза с и радиус вписанной окружности r.
Примем один из катетов за х, второй равен √(с² - x²).
Точки касания окружности со сторонами отстоят:
- от вершины прямого угла на расстоянии r,
- на гипотенузе от вершины острого угла с катетом х на расстоянии
x - r.
- от второй вершины расстояние равно √(с² - x²) - r.
Длина гипотенузы равна: c = (x - r) + (√(с² - x²) - r).
√(с² - x²) = c - x + 2r. Возведём в квадрат:
с² - x² = c² + x² + 4r² - 2cx - 4rx + 4rc.
Получили квадратное уравнение:
x² - (c + 2r)*x +2(r² + rc) = 0, одиз из корней которого соотетствует длине принятого катета х, второй корень - это второй катет.
ответ: по корням уравнения x² - (c + 2r)*x +2(r² + rc) = 0 строятся катеты.
Сделаем проверку правильности формулы для известного "египетского" треугольника с катетами 3 и 4 и гипотенузой 5.
Для него r = (a+b-c)/2 = (3+4-5)/2 = 1.
Подставим в полученную формулу r = 1, c = 5.
x² - (5 + 2*1)*x +2(1² + 1*5) = 0.
x² -7x +12 = 0, D = 49 - 48 = 1,
x1 = (7 - 1)/2 = 3,
x2 = (7 + 1)/2 = 4.
ответ верный.
На катетах прямоугольного треугольника, как на диаметрах, построены окружности. Найдите их общую хорду, если катеты равны 3 и 4.
————————
ответ: 2,4 (ед. длины)
Объяснение:
Пусть в треугольника АВС катеты АС=4, ВС=3, СН - общая хорда.
По т.Пифагора ( или из отношения катетов 3:4 - «египетский треугольник) находим гипотенузу АВ=5.
Хорда СН перпендикулярна гипотенузе, т.к. вписанные углы АНС и ВНС опираются на диаметры. Следовательно, СН - высота треугольника АВС. Её длину легко найти из площади ∆ АВС.
Ѕ(АВС)=0,5•АС•ВС=4•3•1/2=6 ⇒
СН=2Ѕ:АВ=12:5=2,4 (ед. длины)
или:
СН=АС•sin∠A
sin∠A=BC:AB=3/5=0,6
CH=4•0,6=2,4 (ед. длины)