Основа піраміди — рівнобедрений трикутник, у якого основа дорівнює 12 см, а бічна сторона — 10 см. Бічні грані утворюють з основою піраміди двогранні кути 45°. Знайдіть довжину висоти піраміди.
1) Чтобы найти координаты вектора AС, зная координаты его начальной точки А и конечной точки С, необходимо из координат конечной точки вычесть соответствующие координаты начальной точки. То есть:
BA = (Ax - Bx; Ay - By) = (1 - 3; -2 - 6) = (-2; -8).
Задать вопрос
Войти
АнонимМатематика10 ноября 23:50
Даны точки A(1;-2),B(3;6),C(5;-2), 1)найдите координаты векторов AC,BA,2)найдите координаты точки M, делящей пополам
отрезок BC, найдите длину отрезка AM.
ответ или решение1
Родионова Елена
1) Чтобы найти координаты вектора AС, зная координаты его начальной точки А и конечной точки С, необходимо из координат конечной точки вычесть соответствующие координаты начальной точки. То есть:
BA = (Ax - Bx; Ay - By) = (1 - 3; -2 - 6) = (-2; -8).
2) Точка М расположена на отрезке ВС и делит его пополам, следовательно, для поиска координат точки М необходимо определить координаты отрезка ВС и разделить их пополам, то есть:
Определение. "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором". Соединим начала векторов AD и CD в точке С.
Тогда углом между этими векторами будет угол, смежный с внутренним углом С (тупым углом равным 120° - дано, а в равнобокой трапеции углы при основании равны) трапеции ABCD.
Так как сумма смежных углов равна 180°, то искомый угол равен
1) Чтобы найти координаты вектора AС, зная координаты его начальной точки А и конечной точки С, необходимо из координат конечной точки вычесть соответствующие координаты начальной точки. То есть:
AС = (Сx - Ax; Сy - Ay) = (5 - 1; -2 - (-2)) = (4; 0).
Таким же найдем координаты вектора ВА:
BA = (Ax - Bx; Ay - By) = (1 - 3; -2 - 6) = (-2; -8).
Задать вопрос
Войти
АнонимМатематика10 ноября 23:50
Даны точки A(1;-2),B(3;6),C(5;-2), 1)найдите координаты векторов AC,BA,2)найдите координаты точки M, делящей пополам
отрезок BC, найдите длину отрезка AM.
ответ или решение1
Родионова Елена
1) Чтобы найти координаты вектора AС, зная координаты его начальной точки А и конечной точки С, необходимо из координат конечной точки вычесть соответствующие координаты начальной точки. То есть:
AС = (Сx - Ax; Сy - Ay) = (5 - 1; -2 - (-2)) = (4; 0).
Таким же найдем координаты вектора ВА:
BA = (Ax - Bx; Ay - By) = (1 - 3; -2 - 6) = (-2; -8).
2) Точка М расположена на отрезке ВС и делит его пополам, следовательно, для поиска координат точки М необходимо определить координаты отрезка ВС и разделить их пополам, то есть:
М = ВС / 2 = (Сx + Bx; Сy + By) / 2 = ((Сx + Bx) / 2; (Сy + By) / 2) = ((5 ++ 6) / 2) = (8 / 2; 4 / 2) = (4; 2).
Для вычисления длины отрезка воспользуемся формулой вычисления расстояния между двумя точками A (xa; ya) и B (xb; yb):
AB = √(( xb - xa)^2 + (yb - ya)^2).
Подставим значения точки А (1; -2) и М (4; 2) в формулу:
AM = √((4 - 1)^2 + (2 - (-2))^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5.
ответ: координаты вектора АС (4; 0), вектора ВА (-2; -8), координаты точки М (4; 2), длина отрезка АМ = 5.
(CD^AD) = 60°.
Объяснение:
Определение. "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором". Соединим начала векторов AD и CD в точке С.
Тогда углом между этими векторами будет угол, смежный с внутренним углом С (тупым углом равным 120° - дано, а в равнобокой трапеции углы при основании равны) трапеции ABCD.
Так как сумма смежных углов равна 180°, то искомый угол равен
180° - 120° = 60°.