Основание пирамиды — правильный треугольник. Одна из боковых граней пирамиды перпендикулярна к плоскости основания, а две другие грани наклонены к ней под углом в. Высота пирамиды равна Н.
а) Обоснуйте положение высоты пирамиды.
б) Найдите площадь боковой поверхности пирамиды
Так как длины сторон четырёхугольника пропорциональны числам 2 : 3 : 4 : 5, то пусть их длины равны соответственно 2х, 3х, 4х, 5х (х — коэффициент пропорциональности).
Периметр — это сумма длин всех сторон.Следовательно :
2х + 3х + 4х + 5х = 56 см
14х = 56 см
х = 56 см : 14
х = 4 см.
2х = 2*4 см = 8 см.
2х = 2*4 см = 8 см.3х = 3*4 см = 12 см.
2х = 2*4 см = 8 см.3х = 3*4 см = 12 см.4х = 4*4 см = 16 см.
2х = 2*4 см = 8 см.3х = 3*4 см = 12 см.4х = 4*4 см = 16 см.5х = 5*4 см = 20 см.
ответ : 8 см, 12 см, 16 см, 20 см.
У параллельных прямых коэффициенты "к" равны.
Сторона АВ:
Уравнение прямой:
Будем искать уравнение в виде y = k · x + b .
В этом уравнении:
k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX);
b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY.
k = (yB - yA) / (xB - xA) = (2 - (-6)) / (4 - (2)) = 4;
b = yB - k · xB = 2 - (4) · (4) = yA - k · xA = -6 - (4) · (2) = -14 .
Искомое уравнение: y = 4 · x - 14 .
Сторона ВС:
k = (yB - yA) / (xB - xA) = (5 - (2)) / (-2 - (4)) = -0.5;
b = yB - k · xB = 5 - (-0.5) · (-2) = yA - k · xA = 2 - (-0.5) · (4) = 4 .
Искомое уравнение: y = -0.5 · x + 4 .
Сторона СД:
k = (yB - yA) / (xB - xA) = (1 - (5)) / (-3 - (-2)) = 4;
b = yB - k · xB = 1 - (4) · (-3) = yA - k · xA = 5 - (4) · (-2) = 13 .
Искомое уравнение: y = 4 · x + 13 .
Сторона АД:
k = (yB - yA) / (xB - xA) = (1 - (-6)) / (-3 - (2)) = -1.4;
b = yB - k · xB = 1 - (-1.4) · (-3) = yA - k · xA = -6 - (-1.4) · (2) = -3.2 .
Искомое уравнение: y = -1.4 · x - 3.2 .
Уравнения сторон АВ и СД имеют одинаковые коэффициенты "к", поэтому заданный четырёхугольник - трапеция.