Условие неконкретно, и от этого нет ответа. Задача такая: Две хорды OA OB по 5 см образуют вписанный угол в 36 градусов Найти длину окружности решение: Треугольник OAB равнобедренный. Угол при вершине 36° Угол при основании (180-36)/2 = 72° По теореме синусов радиус описанной окружности треугольника OAB 2R = OA/sin(∠ABO) 2R = 5/sin(72°) R = 5/(2 *sin(72°)) ≈ 2,629 см Можно выразить в радикалах, но они здоровенные. Теперь с дугами ∠AOB = 36° - вписанный угол ∠AZB = 2*∠AOB = 2*36 = 72° - соответствующий центральный дуга АВ = 72° её длина l(AB) = R*∠AZB/180*π = 5/(2 *sin(72°))*72/180*π ≈ 3,3033 см Дуга АО = дуга ВО = (360-72)/2 = 144° их длина l(AО) = R*∠AZО/180*π = 5/(2 *sin(72°))*144/180*π ≈ 6,6065 см и полная длина окружности l(O) = R*2*π = 5/(2 *sin(72°))*2*π ≈ 16,5163 см
Так как плоскости АВЕ и КМPT параллельны, то АВ║КТ, О∈КТ ⇒ ВК=СК и АТ=ДТ; АЕ║РТ и ВЕ║КМ, значит в треугольниках АЕД и ВЕС отрезки РТ и КМ - средние линии, значит ЕР=ДР и ЕМ=СМ, значит МР - средняя линия треугольника СЕД ⇒ МР=СД/2=12/2=6 см. КТ║СД, МР║СД ⇒ МР║КТ, значит КМPT - трапеция, причём равнобедренная (в равных тр-ках АЕД и ВЕС средние линии КМ и РТ равны). В трапеции КМPT КМ=ВЕ/2, РТ=АЕ/2, МР=АВ/2 и все прямые соответственно параллельны, значит высота трапеции NO равна половине высоты тр-ка АЕВ. NO=EH/2. В прямоугольном тр-ке ЕОН ОН=АВ/2=12/2=6 см. ЕН²=ЕО²+ОН²=8²+6²=100. ЕН=10 см. NO=10/2=5 см. Площадь искомого сечения: S(KMРТ)=NO·(КТ+МР)/2=5(12+6)/2=45 см² - это ответ.
Задача такая:
Две хорды OA OB по 5 см образуют вписанный угол в 36 градусов
Найти длину окружности
решение:
Треугольник OAB равнобедренный. Угол при вершине 36°
Угол при основании (180-36)/2 = 72°
По теореме синусов радиус описанной окружности треугольника OAB
2R = OA/sin(∠ABO)
2R = 5/sin(72°)
R = 5/(2 *sin(72°)) ≈ 2,629 см
Можно выразить в радикалах, но они здоровенные.
Теперь с дугами
∠AOB = 36° - вписанный угол
∠AZB = 2*∠AOB = 2*36 = 72° - соответствующий центральный
дуга АВ = 72°
её длина
l(AB) = R*∠AZB/180*π = 5/(2 *sin(72°))*72/180*π ≈ 3,3033 см
Дуга АО = дуга ВО = (360-72)/2 = 144°
их длина
l(AО) = R*∠AZО/180*π = 5/(2 *sin(72°))*144/180*π ≈ 6,6065 см
и полная длина окружности
l(O) = R*2*π = 5/(2 *sin(72°))*2*π ≈ 16,5163 см
КТ║СД, МР║СД ⇒ МР║КТ, значит КМPT - трапеция, причём равнобедренная (в равных тр-ках АЕД и ВЕС средние линии КМ и РТ равны).
В трапеции КМPT КМ=ВЕ/2, РТ=АЕ/2, МР=АВ/2 и все прямые соответственно параллельны, значит высота трапеции NO равна половине высоты тр-ка АЕВ. NO=EH/2.
В прямоугольном тр-ке ЕОН ОН=АВ/2=12/2=6 см. ЕН²=ЕО²+ОН²=8²+6²=100.
ЕН=10 см.
NO=10/2=5 см.
Площадь искомого сечения: S(KMРТ)=NO·(КТ+МР)/2=5(12+6)/2=45 см² - это ответ.