В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География

Основание правой шестиугольной пирамиды составляет 1 см, а стороны - 2 см. Найдите общую площадь пирамиды.

Показать ответ
Ответ:
Tema20181234
Tema20181234
26.06.2022 04:47
Можно воспользоваться теоремой:
Угол, образованный касательной к окружности и секущей, проведенной через точку касания, равен половине дуги, заключенной между его сторонами.
это легко доказывается...
достаточно рассмотреть равнобедренный треугольник с вершиной в центре окружности и боковыми сторонами-радиусами окружности
угол при основании этого треугольника в сумме с углом МАВ составляет 90°
и, следовательно, равен половине угла при вершине ---центрального угла, градусная мера которого и определяет градусную меру дуги АВ)))
угол АСВ --вписанный, опирается на дугу АВ, равен половине градусной меры дуги АВ
угол МАВ равен (по теореме) половине градусной меры дуги АВ
интересно, что АС не обязательно должен быть диаметром)))
это видно на втором рисунке
угол МАВ (угол между касательной и секущей) равен любому вписанному и опирающемуся на дугу АВ углу...
Отрезок ac - диаметр окружности, ab - хорда, ma - касательная, угол mab острый. докажите, что
0,0(0 оценок)
Ответ:
ученик2класс1
ученик2класс1
09.06.2020 04:53
Лемма. Если из точки P к окружности проведены две секущие, одна из которых пересекает окружность в точках A и B, а вторая в точках C и D, то
PA\cdot PB=PC\cdot PD. Это легко следует из подобия по двум углам треугольников PBC и PDA.

Решение исходной задачи. Обозначим центр окружности О, P - точка пересечение лучей AB и DC, Q - точка пересечения лучей BC и AD, PO=15, QO=17, радиус R=\sqrt{159}. Пусть также М - точка пересечения окружностей описанных около треугольников BCP и DCQ. Тогда
\angle PMC=180^\circ-\angle PBC=\angle ABC
\angle QMC=180^\circ-\angle QDC=\angle ADC
Следовательно \angle PMC+\angle QMC=\angle ABC+ \angle ADC=180^\circ, т.е. точка М лежит на отрезке PQ.

Теперь если провести секущую из P через О, то по лемме получаем:
PC\cdot PD=(PO+R)(PO-R)=PO^2-R^2=15^2-159=66.
А также PM\cdot PQ=PC\cdot PD=66.
Аналогично, если провести секущую из Q через О, то
QC\cdot QB=(QO+R)(QO-R)=QO^2-R^2=17^2-159=130.
А также QM\cdot PQ=QC\cdot QD=130.
Таким образом, PM\cdot PQ+QM\cdot PQ=(PM+QM)PQ=PQ^2=66+130=196, откуда PQ=14.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота