Обозначим вершины треугольника А В С, высоту ВН. ВН делит ∆АВС на 2 равных прямоугольных треугольника, в которых высота и половины являются катетами, а боковые стороны - гипотенузы, и ещё ВН является ещё биссектрисой и медианой, так как ∆АВС равнобедренный, поэтому <АВН=<СВН, АН=НС=4√3÷2=2√3см. Рассмотрим∆АВН и найдём <А, используя косинус угла. Косинус - это отношение прилежащего к углу катета к гипотенузе, поэтому
Так как <А=30°, то ВН=1/2 АВ, поскольку катет, лежащий напротив угла 30° равен половине гипотенузы, поэтому ВН=АВ÷2=4÷2=2см
ВН=2см
Объяснение:
Обозначим вершины треугольника А В С, высоту ВН. ВН делит ∆АВС на 2 равных прямоугольных треугольника, в которых высота и половины являются катетами, а боковые стороны - гипотенузы, и ещё ВН является ещё биссектрисой и медианой, так как ∆АВС равнобедренный, поэтому <АВН=<СВН, АН=НС=4√3÷2=2√3см. Рассмотрим∆АВН и найдём <А, используя косинус угла. Косинус - это отношение прилежащего к углу катета к гипотенузе, поэтому
Так как <А=30°, то ВН=1/2 АВ, поскольку катет, лежащий напротив угла 30° равен половине гипотенузы, поэтому ВН=АВ÷2=4÷2=2см