Основанием пирамиды является треугольник. Все боковые рёбра пирамиды равны.
Назови вид треугольника основания, если основание высоты пирамиды находится в точке пересечения высот.
1 Остроугольный
2 Равнобедренный
3 Тупоугольный
4 Прямоугольный
5 Равносторонний
R=3/cos 18=3/0.95=3.15 (см).
Найдем сторону фигуры:
a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см)
ответ: 1.89 см.
2) Найдем R:
R = r/cos 180/n=5/√3/2=10√3/3 (см)
Длина стороны равна R, следовательно a=R=10√3/3, значит,
P = 6a=10√3/3*6=20√3 (cм) или 34.64 см.
ответ: 20√3 см или 34.64 см.
3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см).
ответ: 30 см.
/
3 / 4
/
5/ 6
/
7 / 8
Пусть угол 1=48 градусов, тогда вертикальный с ним угол 3 тоже равен 48 градусов по свойству вертикальных углов. А угол 2 смежный с 1. Он равен 180-48=132 градуса. Вертикальный с ним угол 4 равен тоже 132 град по свойству вертикальных углов. И наконец равны соответственные и накрест лежащие углы для нижней прямой:
угол6=углу7=132 градуса и угол 5= углу 8 = 48 градусов