Основанием пирамиды является треугольник. Все боковые рёбра пирамиды равны.
Назови вид треугольника основания, если основание высоты пирамиды находится в точке пересечения высот.
1 Остроугольный
2 Равнобедренный
3 Тупоугольный
4 Прямоугольный
5 Равносторонний
Объяснение:
один из углов треугольника равен 2х, то второй=3х, а третий=4х.
Т.к. сумма углов треугольника=180 гр., то
2х+3х+4х=180
9х=180
х=20 (градусам)
Тогда,
1) первый угол = 2*20=40(гр.), а его внешний угол будет равным 180-40=140(гр)
2) второй угол=3*20=60 (гр.), а его внешний угол будет равным 180-60=120(гр)
3) третий угол=4*20=80(гр),, а его внешний угол будет равным 180-80=100(гр)
Следовательно внешние углы будут относится, как 140:120:100,
сокращая на 20 получим, что внешние углы треугольника относятся, как 7:6:5
Точка разбиения О, ближайшая точка плоскости Z
1. M и N по одну сторону плоскости
1а.
MZ = 5 дм; NZ = 3 дм
MO = 3*ON
MN = 2 дм
MO + ON = 2
3*ON + ON = 2
4*ON = 2
ON = 0,5 дм
OZ = 3+0,5 = 3,5 дм
1б)
MZ = 5 дм; NZ = 3 дм
3*MO = ON
MN = 2 дм
MO + ON = 2
MO + 3*MO = 2
4*MO = 2
MO = 0,5 дм
OZ = 5-0,5 = 4,5 дм
2. M и N по разные стороны плоскости
2а.
MZ = 5 дм; NZ = 3 дм
MO = 3*ON
MN = 5+3 = 8 дм
MO + ON = 8
3*ON + ON = 8
4*ON = 8
ON = 2 дм
OZ = 3-2 = 1 дм
2б)
MZ = 5 дм; NZ = 3 дм
3*MO = ON
MN = 8 дм
MO + ON = 8
MO + 3*MO = 8
4*MO = 8
MO = 2 дм
OZ = 5-2 = 3 дм