В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
ирина1844
ирина1844
12.08.2020 01:46 •  Геометрия

Основанием треугольной пирамиды SABC является прямоугольный треугольник ABC с гипотенузой AC и угол BAC=30 градусов. Боковое ребро SB перпендикулярно плоскости основания пирамиды и равно 12см. Найдите высоту боковой грани ASC, опущенную из вершины S , если AB=10см.​


Основанием треугольной пирамиды SABC является прямоугольный треугольник ABC с гипотенузой AC и угол

Показать ответ
Ответ:
zlata25148
zlata25148
02.09.2021 22:26
Окружность, центр которой принадлежит стороне AB треугольника ABC, проходит через точку B, касается стороны AC в точке C и пересекает сторону AB в точке D. Найдите больший угол треугольника ABC (в градусах), если AD:DB=1:2 
-----------
Центр окружности лежит на АВ, следовательно, АD- диаметр. 
Проведем  радиус ОС . 
Т.к. С - точка касания, ОС ⊥ АС.
Треугольник АОС - прямоугольный. 
ОС=ОВ=ОD=r,  АD:DB=1:2 ⇒
AD=DO=OB=r 
В прямоугольном треугольнике АСD гипотенуза
AO=2 r=2 OC ⇒ 
sin∠OАС= OС:АО=1/2  ⇒ 
Угол ОАС=30º,⇒ 
угол АОС=60º, а смежный с ним угол ВОС=180º-60º-120º
Острые углы равнобедренного треугольника ВОС равны (180º-120º):2=30º⇒ 
Больший угол АСВ треугольника АВС равен 
∠АСВ=∠АСО+∠ВСО=90º+30º=120º

Окружность, центр которой принадлежит стороне ab треугольника abc, проходит через точку b, касается
0,0(0 оценок)
Ответ:
ainura12a
ainura12a
06.01.2022 16:15
Используем формулу длины биссектрисы:
L= \sqrt{AB*BC-AD*DC}.
Обозначим АВ=с, ВС=а.
Возведём в квадрат:
L^2=a*c-3*4
Отсюда а*с=36+12=48         (1).
Биссектриса делит сторону АС пропорционально боковым сторонам.
3/с = 4/а
или с = (3/4)*а.
Подставим в уравнение (1):
а*((3/4)*а) = 48
а² =(48*4) / 3 = 64
а = √64 = 8.
с = (3*8) / 4 =6.
Находим радиус окружности, вписанной в треугольник АВС:
r= \sqrt{ \frac{(p-a)(p-b)(p-c)}{p} } = \sqrt{ \frac{(10.5-8)(10.5-7)(10.5-6)}{10.5} } =1,936492.
Аналогично находим радиус окружности, вписанной в треугольник 
ДВС: r₁=1,290994.
Разность r - r₁ = 0,645498.
По теореме косинусов находим величину угла С:
C=arccos \frac{a^2+b^2-c^2}{2ab} =arccos \frac{8^2+7^2-6^2}{2*8*7} =arccos 0,6875.
С =  0.812756 радиан = 46.56746°.
Центры окружностей с радиусами r и r₁ лежат на биссектрисе угла С.
Тангенс угла С/2 = tg(46.56746 / 2) = tg  23.28373° = 0,43033.
Тогда длина отрезка КМ равна:
КМ = (r-r₁) / tg(C/2) = 0,645498 / 0,43033 = 1,5.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота