Основания равнобокой трапеции ABCD равны 11 см и 23 см, а высота - 9 см. Найдите: a) Диагональ трапеции AC. в) Радиус окружности, описанной около трапеции
Вспомним свойство касательной : Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания(образует 90*). Проведем из центра окружности О два радиуса в точки А и В , у нас получился равносторонний треугольник ОАВ - все углы по 60*. Обозначим на касательной для удобства две точки К и С,как показано на рисунке( они расположены в противоположных сторонах от точки А). ∠ОАК =90* ∠ОАВ=60* ∠ВАК=∠ОАК -∠ОАВ ∠ВАК=90*-60* ∠ВАК=30* Мы нашли угол, образованный хордой АВ, длина которой равна радиусу окружности, и касательной, проходящей через точку А. Но хорда АВ и касательная КС также образуют ∠ОАС, найдём его. ∠ОАС и ∠ВАК это смежные углы, их сумма 180* ∠ОАС= 180*-∠ВАК ∠ОАС= 180*-30* ∠ОАС= 150*
1. Радиус сферы равен половине диаметра, R = 25 см.
Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен сечению. это и есть расстояние от центра сферы до сечения.
Итак, ОА = 25 см, ОС = 15 см. Из прямоугольного треугольника АОС по теореме Пифагора находим радиус сечения:
АС = √(ОА² - ОС²) = √(25² - 15²) = √(625 - 225) = √400 = 20 cм
Линия пересечения сферы плоскостью - окружность. Ее длина:
C = 2π·AC = 2π · 20 = 40π см
2. Сечение шара - круг. Его площадь равна 36π см²:
Sсеч = π · r² = 36π
r² = 36
r = 6 см
Из прямоугольного треугольника АОС по теореме Пифагора:
ОС = √(ОА² - r²) = √(100 - 36) = √64 = 8 см - искомое расстояние.
3. Радиус большого круга равен радиусу шара.
Площадь сечения:
Sсеч = πr²
Площадь большого круга:
S = πR², R = √(S/π)
Sсеч / S = πr² / (πR²) = r²/ R²
По условию Sсеч / S = 3 / 4, ⇒
r²/ R² = 3 / 4, тогда r/R = √3/2
В прямоугольном треугольнике АОС r/R - это косинус угла А.
Тогда ∠А = 30°.
Расстояние от центра шара до сечения - отрезок ОС. Это катет, лежащий напротив угла в 30°, значит он равен
OC = R/2 = √(S/π) / 2 = √S/(2√π)
4. Радиус шара равен половине диаметра:
R = 2√3 см
Прямоугольный треугольник ОВС равнобедренный, так как в нем острый угол равен 45°, поэтому
ОС = r = R/√2 = 2√3 / √2 = √6 см
Sсеч = πr² = π · (√6)² = 6π см²
Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания(образует 90*).
Проведем из центра окружности О два радиуса в точки А и В , у нас получился равносторонний треугольник ОАВ - все углы по 60*.
Обозначим на касательной для удобства две точки К и С,как показано на рисунке( они расположены в противоположных сторонах от точки А).
∠ОАК =90*
∠ОАВ=60*
∠ВАК=∠ОАК -∠ОАВ
∠ВАК=90*-60*
∠ВАК=30*
Мы нашли угол, образованный хордой АВ, длина которой равна радиусу окружности, и касательной, проходящей через точку А.
Но хорда АВ и касательная КС также образуют ∠ОАС, найдём его.
∠ОАС и ∠ВАК это смежные углы, их сумма 180*
∠ОАС= 180*-∠ВАК
∠ОАС= 180*-30*
∠ОАС= 150*