1. Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1. S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r. значит можно. 2. Не может. k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ . Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂. CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃. DB =BE ⇒k₂ =2k₁ ; EC =CF ⇒k₃ =2k₂ =4k₁ . AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁ ⇒ AB+BC< AC ,что невозможно.
Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂. DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.
Дан треугольник с вершинами А(2,4) В(2,7) и С(6,4). Стороны треугольника АВС: a = BC, b = AC, c = AB. 1) Центр вписанной окружности находится на пересечении биссектрис.
Свойство биссектрисы треугольника:
Биссектриса треугольника делит третью сторону на отрезки, пропорциональные двум другим сторонам.
Проведём биссектрисы углов В и С. Для этого высчитываем координаты точек К и М пересечения биссектрис со сторонами, используя их свойство.
Далее по координатам вершин В и С и найденных точек К и М определяем уравнения биссектрис.
Решая систему полученных уравнений находим координаты центра вписанной окружности.
Детальные расчёты приведены в приложении.
Но для данной задачи есть более простое решение.
Находим длины сторон треугольника.
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √9 = 3, BC = √((Хc-Хв)²+(Ус-Ув)²) = √25 = 5, AC = √((Хc-Хa)²+(Ус-Уa)²) = √16 = 4. Отсюда видно, что треугольник прямоугольный,
r =(a+b-c)2 = (3+4-5)/2 = 1.
R = abc/(4S) = (3*4*5)/(4*((1/2)*3*4)) = 60/24 = 2,5.
2) координаты центра описанной окружности находятся на пересечении срединных перпендикуляров к сторонам треугольника.
Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1.
S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r.
значит можно.
2. Не может.
k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ .
Если :
AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁.
BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂.
CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃.
DB =BE ⇒k₂ =2k₁ ;
EC =CF ⇒k₃ =2k₂ =4k₁ .
AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁
⇒ AB+BC< AC ,что невозможно.
Если :
AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁.
BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂.
DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.
Стороны треугольника АВС: a = BC, b = AC, c = AB.
1) Центр вписанной окружности находится на пересечении биссектрис.
Свойство биссектрисы треугольника:
Биссектриса треугольника делит третью сторону на отрезки, пропорциональные двум другим сторонам.
Проведём биссектрисы углов В и С. Для этого высчитываем координаты точек К и М пересечения биссектрис со сторонами, используя их свойство.
Далее по координатам вершин В и С и найденных точек К и М определяем уравнения биссектрис.
Решая систему полученных уравнений находим координаты центра вписанной окружности.
Детальные расчёты приведены в приложении.
Но для данной задачи есть более простое решение.
Находим длины сторон треугольника.
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √9 = 3,BC = √((Хc-Хв)²+(Ус-Ув)²) = √25 = 5,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √16 = 4.
Отсюда видно, что треугольник прямоугольный,
r =(a+b-c)2 = (3+4-5)/2 = 1.
R = abc/(4S) = (3*4*5)/(4*((1/2)*3*4)) = 60/24 = 2,5.
2) координаты центра описанной окружности находятся на пересечении срединных перпендикуляров к сторонам треугольника.