Основой пирамиды есть прямоугольник, площадь которого равна 9. две боковые грани перпендикулярны к площади основания, а две другие - наклонены к ней под углами 30 и 60. найти объем пирамиды
9. треугольник sop = треугольнику rop по стороне и прилежащим к ней углам.
т.к. сторона ор общая, угол rpo=spo, rop=sop.
10.—
11. kmp=kpn
по двум сторонам и углу между ними.
т.к кр общая сторона. км=kp по условию,кмр=ркn.
12.авс=адс по трём сторонам.
т.к.ас общая сторона
ав=сд,ад=св.
13.асд=сдв по стороне и двум прилежащим к ней углам.
т.к. сд общая сторона
асд=дсв
адс=сдв.
14.rpq=rqs по стороне и двум прилежащим к ней углам.т.к.prq=sqrpqr=qrs rqобщая сторона.15.авд=дсв по сторонам и двум углам.т.к. адв=сдвавд=свддв общая сторона.16. ктм=stp по двум сторонам и углу между ними.ktm=stp т.к. вертикальные углыkt=tpmt=ts
если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна плоскости
1. Прямая, проведенная перпендикулярно двум диаметрам окружности, перпендикулярна плоскости окружности, так как диаметры пересекаются.
2. Прямая, проведенная перпендикулярно диагоналям прямоугольника , перпендикулярна плоскости прямоугольника, так как диагонали пересекаются.
3. Нельзя утверждать, что прямая, проведенная перпендикулярно основаниям трапеции , будет перпендикулярна плоскости трапеции, так как основания трапеции параллельны, т.е. не пересекаются.
4. Прямая, проведенная перпендикулярно сторонам ромба с общей вершиной , перпендикулярна плоскости ромба, так как стороны пересекаются.
5. Нельзя утверждать, что прямая проведенная перпендикулярно двум сторонам параллелограмма, перпендикулярна плоскости параллелограмма, так как это могут быть противолежащие стороны параллелограмма, а они параллельны.
9. треугольник sop = треугольнику rop по стороне и прилежащим к ней углам.
т.к. сторона ор общая, угол rpo=spo, rop=sop.
10.—
11. kmp=kpn
по двум сторонам и углу между ними.
т.к кр общая сторона. км=kp по условию,кмр=ркn.
12.авс=адс по трём сторонам.
т.к.ас общая сторона
ав=сд,ад=св.
13.асд=сдв по стороне и двум прилежащим к ней углам.
т.к. сд общая сторона
асд=дсв
адс=сдв.
14.rpq=rqs по стороне и двум прилежащим к ней углам.т.к.prq=sqrpqr=qrs rqобщая сторона.15.авд=дсв по сторонам и двум углам.т.к. адв=сдвавд=свддв общая сторона.16. ктм=stp по двум сторонам и углу между ними.ktm=stp т.к. вертикальные углыkt=tpmt=ts
1. Да.
2. Да.
3. Нет.
4. Да.
5. Нет.
Объяснение:
Признак перпендикулярности прямой и плоскости:
если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна плоскости
1. Прямая, проведенная перпендикулярно двум диаметрам окружности, перпендикулярна плоскости окружности, так как диаметры пересекаются.
2. Прямая, проведенная перпендикулярно диагоналям прямоугольника , перпендикулярна плоскости прямоугольника, так как диагонали пересекаются.
3. Нельзя утверждать, что прямая, проведенная перпендикулярно основаниям трапеции , будет перпендикулярна плоскости трапеции, так как основания трапеции параллельны, т.е. не пересекаются.
4. Прямая, проведенная перпендикулярно сторонам ромба с общей вершиной , перпендикулярна плоскости ромба, так как стороны пересекаются.
5. Нельзя утверждать, что прямая проведенная перпендикулярно двум сторонам параллелограмма, перпендикулярна плоскости параллелограмма, так как это могут быть противолежащие стороны параллелограмма, а они параллельны.