Основою бічної призми є прямокутний трикутник ABC AC=6 BC=8 Діагональ бічної грані CB1 утворює із площиною основи кут 30 градусів 1.Чому дорівнює Площу основи призми?2.Площа перерізу АВС1 призми дорівнює ?3. Площини більшої бічної грані призми дорівнює?4.площа бічної поверхні призми дорівнює? А -48 Б-80/корень із 3В -64 корень3 Г- 16корень3. Д-24
Объяснение:
а) Проведем РК║АВ.
РК⊥(ВВ₁С₁), значит В₁К - проекция прямой В₁Р на плоскость (ВВ₁С₁).
ΔВ₁ВК = ΔBCQ по двум катетам, значит
∠1 = ∠2 и ∠3 = ∠4.
∠1 + ∠3 = 90°, значит в ΔКВМ ∠1 + ∠4 = 90°, следовательно,
∠ВМК = 90°, т.е. В₁К⊥BQ.
Но тогда и B₁P⊥BQ по теореме о трех перпендикулярах.
б)
РК⊥(ВВ₁С₁), значит РК⊥BQ,
BQ⊥B₁K (доказано в п. а), тогда BQ⊥(В₁КР).
Проведем МН⊥В₁Р в треугольнике В₁КР.
Так как МН⊂(В₁КР), то МН⊥BQ и МН⊥В₁Р по построению, тогда
МН - искомое расстояние между прямыми B₁P и BQ.
На выносном рисунке:
ΔВСQ = ΔEC₁Q по катету и острому углу (CQ = C₁Q и углы при вершине Q равны как вертикальные), ⇒ ЕС₁ = ВС = 3.
ΔВ₁МЕ ~ ΔKMB по двум углам (при вершине М - вертикальные и ∠1 = ∠Е как накрест лежащие при ВС║В₁Е и секущей ВЕ):
⇒
Из прямоугольного треугольника В₁ВК по теореме Пифагора:
Из прямоугольного треугольника В₁КР по теореме Пифагора:
ΔB₁MH:
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.