острый угол образованный двумя секущими проведенными из точки лежащей вне окружности равен 41 одна из дуг заключенных между секущими равна 138 найдите вторую дугу
1. Угол ADB=180-60(угол BDC)=120.2. Треуголньник ABD-равнобедренный, т.к угол ABD=DAB (у равнобед.треугольника углы при основании равны).3. Угол DBC=180-(60+60)=60. Значит треугольник BDC- равносторонний( у равносторон. треугольника все углы равны 60). Следовательно CD=BC=BD=AD=5.4.AC=AD+DCAC=5+5=105. DH-расстояние от точки D до AB,Значит угол DHC равен 90 (расстояние от точки до прямой- перпендикуляр от точки до прямой). 6. В треугольнике DHC, DH-катет лежащий против угла в 30 градусов. Значит он равен половине гипотенузы. DH= 0.5*ADDH=0.5*5=2.5ответ:10; 2,5
Обозначим катеты а и в, радиус вписанной окружности r. На катетах отрезки от острого угла до точки касания вписанной окружности тоже равны 3 и 7. Тогда катеты равны r+3 и r+7. По Пифагору (r+3)² + (r+7)² = 10². r²+6r+9+r²+14r+49 = 100. 2r²+20r-42 = 0, r²+10r-21 = 0. Квадратное уравнение, решаем относительно r: Ищем дискриминант: D=10^2-4*1*(-21)=100-4*(-21)=100-(-4*21)=100-(-84)=100+84=184;Дискриминант больше 0, уравнение имеет 2 корня: r_1=(√184-10)/(2*1)=√184/2-10/2=√46-5 ≈1,78233;r_2=(-√184-10)/(2*1)=-√184/2-10/2=-√46-5 ≈ -11,78233 этот отрицательный корень отбрасываем. Определяем катеты: а = √46-5+3 = √46-2, в = √46-5+7 = √46+2. Площадь S треугольника равна: S = (1/2)ab = (1/2)*(√46-2)*(√46+2) = (1/2)*(46-4) = 42/2 = 21 кв.ед.
На катетах отрезки от острого угла до точки касания вписанной окружности тоже равны 3 и 7.
Тогда катеты равны r+3 и r+7.
По Пифагору (r+3)² + (r+7)² = 10².
r²+6r+9+r²+14r+49 = 100.
2r²+20r-42 = 0,
r²+10r-21 = 0.
Квадратное уравнение, решаем относительно r: Ищем дискриминант:
D=10^2-4*1*(-21)=100-4*(-21)=100-(-4*21)=100-(-84)=100+84=184;Дискриминант больше 0, уравнение имеет 2 корня:
r_1=(√184-10)/(2*1)=√184/2-10/2=√46-5 ≈1,78233;r_2=(-√184-10)/(2*1)=-√184/2-10/2=-√46-5 ≈ -11,78233 этот отрицательный корень отбрасываем.
Определяем катеты:
а = √46-5+3 = √46-2,
в = √46-5+7 = √46+2.
Площадь S треугольника равна:
S = (1/2)ab = (1/2)*(√46-2)*(√46+2) = (1/2)*(46-4) = 42/2 = 21 кв.ед.