ОТМЕЧУ ЛУЧШИЙ ОТВЕТ! От Там где непонятные символы, можете отметить по обычной нумерации или как вам удобно. (а,б,в или 1, 2, 3). Это мой полугодовой экзамен, так что поставлю за ваше имя свечку и век не забуду. В профиле есть такой-же вопрос, можете скопировать своё ответ туда и получить
Поскольку сумма углов треугольника равна 180o, то можно считать, что данные углы противолежат вершине, из которой проведена данная медиана.
Пусть в треугольнике ABC известны углы $ \angle$B = $ \beta$ и $ \angle$C = $ \gamma$ и медиана AD = ma, проведённая к стороне BC. На продолжении отрезка AD за точку D возьмём точку A1 так, что DA1 = AD. В треугольнике AA1B известна сторона AA1 = 2ma и углы $ \angle$ABD = $ \beta$ и $ \angle$A1BD = $ \angle$ACB = $ \gamma$.
Из точки B отрезок AD виден под углом $ \beta$, а отрезок A1D — под углом $ \gamma$ Тогда вершина B есть пересечение двух дуг, построенных на AD и DA1, вмещющих углы $ \beta$ и $ \gamma$ соответственно и расположенных по одну сторону от прямой AA1. Отсюда выстекает следующее построение.
Строим середину D произвольного отрезка AA1 = 2ma. На отрезке AD как на хорде построим дугу окружности так, чтобы из каждой точки этой дуги отрезок AD был виден под данным углом $ \beta$. По ту же сторону от прямой AA1 строим на отрезке A1D как на хорде дугу окружности так, чтобы из каждой точки этой дуги отрезок A1D был виден под данным углом $ \gamma$. Пусть B — точка пересечения этих дуг, отличная от D. На продолжении медианы BA1 треугольника ABA1 отложим отрезок A1C, равный BA1. Тогда треугольник ABC — искомый.
Действительно, AD = $ {\frac{1}{2}}$AA1 = ma — данная медиана.
1)16 корней из 3× pi
2)288 корней из 3 ×pi
Объяснение:
1)Sбок. цил.= 2×pi×r×h, r=AB/2, h=CB, pi=~3,14(иногда pi оставляют в ответе )
sinCAB=CB/AC, cosCAB=AB/AC
sin60°=CB/8, (корень из 3)/2=CB/8, CB= (8корней из 3)/2=4×корней из 3
cos60°=AB/8, 1/2=AB/8, 2AB=8, AB=4
Sбок. цил.=2*3,14×2×4 корней из 3=50,24 корней из 3 (или = 16корней из 3 ×pi)
2)Sбок. цил.= 2×pi×r×h, r=OA=OB, h=OO1, pi=~3,14(иногда pi оставляют в ответе )
треугольник AOB-египетский, тк у него стороны равны соотношению 3:4:5
Следовательно, OB=12
(ну или решать через теорему Пифагора OB²=15²-9², OB=Корень из 144,OB=12)
в цилиндр можно вписать только равнобедренный треугольник
=>доп.построение:продолжим сторону OB до пересечения с окружностью, пусть эта сторона BB1=12×2=24=B1O1=O1B
OO1²=24²-12², OO1=12 корней из 3
Sбок. цил.=2×pi×12×12корней из3=288корней из 3×pi
Поскольку сумма углов треугольника равна 180o, то можно считать, что данные углы противолежат вершине, из которой проведена данная медиана.
Пусть в треугольнике ABC известны углы $ \angle$B = $ \beta$ и $ \angle$C = $ \gamma$ и медиана AD = ma, проведённая к стороне BC. На продолжении отрезка AD за точку D возьмём точку A1 так, что DA1 = AD. В треугольнике AA1B известна сторона AA1 = 2ma и углы $ \angle$ABD = $ \beta$ и $ \angle$A1BD = $ \angle$ACB = $ \gamma$.
Из точки B отрезок AD виден под углом $ \beta$, а отрезок A1D — под углом $ \gamma$ Тогда вершина B есть пересечение двух дуг, построенных на AD и DA1, вмещющих углы $ \beta$ и $ \gamma$ соответственно и расположенных по одну сторону от прямой AA1. Отсюда выстекает следующее построение.
Строим середину D произвольного отрезка AA1 = 2ma. На отрезке AD как на хорде построим дугу окружности так, чтобы из каждой точки этой дуги отрезок AD был виден под данным углом $ \beta$. По ту же сторону от прямой AA1 строим на отрезке A1D как на хорде дугу окружности так, чтобы из каждой точки этой дуги отрезок A1D был виден под данным углом $ \gamma$. Пусть B — точка пересечения этих дуг, отличная от D. На продолжении медианы BA1 треугольника ABA1 отложим отрезок A1C, равный BA1. Тогда треугольник ABC — искомый.
Действительно, AD = $ {\frac{1}{2}}$AA1 = ma — данная медиана.
$\displaystyle \angle$ABC = $\displaystyle \angle$ABD = $\displaystyle \beta$, $\displaystyle \angle$ACB = $\displaystyle \angle$A1BC = $\displaystyle \angle$A1BD = $\displaystyle \gamma$
-- данные углы.