Отрезки AB и CD являются хордами окружности и пересекаются в точке X. a) AX = 4 см, XB = 13 см, CD = 24 см. Найдите длины отрезков СХ и ХD. b) Найдите угол АXС, если дуга AD=98°, дуга BC= 54
13. От точки A опускаешь высоту до прямой а, так как расстояние это есть длина перпендикуляра. Получится прямоугольный треугольник, опущенная высота лежит против угла 30° и является катетом, значит этот катет равен половине гипотенузы, а гипотенуза равна 4 см, следовательно расстояние от A до a = 2 см
14. Треугольник равнобедренный, так как углы при основании равны. Также опускаешь высоту до прямой а, эта высота будет являться также медианой так как треугольник равнобедренный, значит высота будет равна 14/2 см = 7см. Так как образованный треугольник также будет равнобедренным, потому что - углы по 45° и 90° . Надеюсь разберешься)
Объяснение:Основанием прямой призмы является равнобедренный прямоугольный треугольник. Большая боковая грань-квадрат со стороной 6 корней из 2 см.
а) найдите площадь полной поверхности этой призмы;
б) постройте сечение призмы плоскостью, проходящей через катет нижнего основания и середину противолежащего бокового ребра;
в) вычислите площадь этого сечения;
г) найдите угол между плоскостью сечения и плоскостью нижнего основания;
д) постройте линию пересечения секущей плоскости верхнего основания.
рисунок к задаче 190а) Призма прямая, т.е. её боковые ребра перпендикулярны основаниям. Боковые грани являются прямоугольниками. Площадь прямоугольника равна произведению длин смежных сторон, следовательно, площадь той грани больше, ребра которой больше. Боковые ребра параллелепипеда равны, а в основании самуую большую длину имеет гипотенуза, поэтому большая грань - ABB1A1.
И раз эта грань - квадрат, то все её стороны по 6 корней из 2, в том числе и гипотенуза основания. Пусть АС=ВС=х, из теоремы Пифагора найдем катеты основания и его площадь:
площадь основания
Теперь найдем площади боковых граней, а затем и площадь полной поверхности
13. От точки A опускаешь высоту до прямой а, так как расстояние это есть длина перпендикуляра. Получится прямоугольный треугольник, опущенная высота лежит против угла 30° и является катетом, значит этот катет равен половине гипотенузы, а гипотенуза равна 4 см, следовательно расстояние от A до a = 2 см
14. Треугольник равнобедренный, так как углы при основании равны. Также опускаешь высоту до прямой а, эта высота будет являться также медианой так как треугольник равнобедренный, значит высота будет равна 14/2 см = 7см. Так как образованный треугольник также будет равнобедренным, потому что - углы по 45° и 90° . Надеюсь разберешься)
Объяснение:Основанием прямой призмы является равнобедренный прямоугольный треугольник. Большая боковая грань-квадрат со стороной 6 корней из 2 см.
а) найдите площадь полной поверхности этой призмы;
б) постройте сечение призмы плоскостью, проходящей через катет нижнего основания и середину противолежащего бокового ребра;
в) вычислите площадь этого сечения;
г) найдите угол между плоскостью сечения и плоскостью нижнего основания;
д) постройте линию пересечения секущей плоскости верхнего основания.
рисунок к задаче 190а) Призма прямая, т.е. её боковые ребра перпендикулярны основаниям. Боковые грани являются прямоугольниками. Площадь прямоугольника равна произведению длин смежных сторон, следовательно, площадь той грани больше, ребра которой больше. Боковые ребра параллелепипеда равны, а в основании самуую большую длину имеет гипотенуза, поэтому большая грань - ABB1A1.
И раз эта грань - квадрат, то все её стороны по 6 корней из 2, в том числе и гипотенуза основания. Пусть АС=ВС=х, из теоремы Пифагора найдем катеты основания и его площадь:
площадь основания
Теперь найдем площади боковых граней, а затем и площадь полной поверхности
нашли полную поверхность