Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CD, если AB=30, CD=16, а расстояние от центра окружности до хорды AB равно 8.
Если ответом является десятичная дробь, при записи ответа отделите десятичную часть от целой с запятой, без пробелов.
Продолжить
Так как АВ = ВС, то тр-ник АВС - равнобедренный, углы ВАС = ВСА как углы при основании.
У трапеции основания папаллельны, лиагональ АС - является секущей, значит углы САД = ВСА как накрест лежашие.
Так как углы ВАС = ВСА и САД = ВСА, то ВАС = ВСА = САД.
У равнобедренной трапеции углы при основаниях также равны.
Сумма углов трапеции равна 360 градусов.
Пусть угол ВАС = х, тогда угол ВАД = 2х.
(2х + 90 + х) * 2 = 360
6х + 180 = 360
6х = 180
х = 30
Углы А = Д = 30 * 2 = 60
Углы В = С = 90 + 30 = 120.
Треугольник со сторонами 5, 12 и 13 - прямоугольный, угол С - прямой.
AC = 5; BC = 12; AB = 13
Периметр треугольника P = 5 + 12 + 13 = 30; площадь S = 5*12/2 = 30
Найдем радиус вписанной окружности.
r = OK = OM = ON = 2S/P = 2*30/30 = 2 см
Высота H = OD = 4√2 см
Апофемы, перпендикулярные к ребрам основания
DK = DM = DN = √(r^2 + H^2) = √(4 + 16*2) = √36 = 6 см
Площади боковых граней
S(ABD) = DN*AB/2 = 6*13/2 = 3*13 = 39 кв.см.
S(ACD) = DK*AC/2 = 6*5/2 = 3*5 = 15 кв.см.
S(BCD) = DM*BC/2 = 6*12/2 = 6*6 = 36 кв.см.
S(бок) = S(ABD) + S(ACD) + S(BCD) = 39 + 15 + 36 = 90 кв.см.