Допустим, что стороны данного прямоугольника равны х и у. Тогда условие задачи можно записать в виде двух уравнений: 2 * (х + у) = 42, х * у = 110. Из первого уравнения получаем: х + у = 21, у = 21 - х. Подставим это значение у во второе уравнение: х * (21 - х) = 110, 21 * х - х² = 110, х² - 21 * х + 110 = 0. Дискриминант данного квадратного уравнения равен: (-21)² - 4 * 1 * 110 = 441 - 440 = 1. Значит, уравнение имеет следующие решения: х = (21 - 1)/2 = 10 и х = (21 + 1)/2 = 11. Значит у будет равен: у = 21 - 10 = 11 и у = 21 - 11 = 10. ответ: 11 см и 10 см.
2 * (х + у) = 42,
х * у = 110.
Из первого уравнения получаем:
х + у = 21,
у = 21 - х.
Подставим это значение у во второе уравнение:
х * (21 - х) = 110,
21 * х - х² = 110,
х² - 21 * х + 110 = 0.
Дискриминант данного квадратного уравнения равен:
(-21)² - 4 * 1 * 110 = 441 - 440 = 1.
Значит, уравнение имеет следующие решения:
х = (21 - 1)/2 = 10 и х = (21 + 1)/2 = 11.
Значит у будет равен:
у = 21 - 10 = 11 и у = 21 - 11 = 10.
ответ: 11 см и 10 см.
меньшая - 10 см
Несколько теорем к решению данной задачи :
1. В равнобедренном тр-нике боковые стороны равны;
2. Высота в равнобедренном тр-ке делит основание пополам.
3) Теорема Пифагора.
Дано: АВС - равноб.тр-ник
АВ = ВС = 17см
ВН (высота) = 8см
Найти: АС
ВН делит основание на отрезки АН и НС; АН=НС
Рассмотрим треугольник АВН
АВ -гипотенуза, ВН и АН - катеты.
АВН -прямоугольный тр-ник
По т. Пифагора определим АН
АН = YAB^2 - BH^2
AH = Y 17^2 - 8^2 = Y 289 - 64 = Y225 = 15
AC = 2*15 = 30
ответ: АС = 30 см.