Отрезок АВ и СД являются хордами окружности и пересекаются в точке Х . а) АХ=2 см, ХВ =6 см ,СД=7см . Найдите длину отрезков СХ иХД в) найдите угол АХС , если дугв АД=80°,дуга ВС=48°
Проведем сечение конуса плоскостью, проходящей через высоту. Получится равнобедренный треугольник с основанием 12 и высотой 8. Рассмотрим "половинку" этого треугольника - прямоугольный треугольник с катетами, являющимися высотой конуса и радусом основания. Из него находим длину образующей - это гипотенуза этого треугольника. То есть, образующая равна 10 (√(64+36)). Проведем высоту из прямого угла к гипотенузе этого треугольника - это и есть искомое расстояние. Рассмотрим прямоугольный треугольник, в котором радиус основания является гипотенузой, а один из катетов - искомая высота. Этот треугольник подобен "половинке" первоначального треугольника, так как у него равны все углы (один - общий - между образующей и радиусом основания, второй - 90°, значит, равен и третий). А, значит, отношение искомой высоты к радусу основания равно отношению высоты конуса к образующей, то есть искомая высота (расстояние от центра основания до образующей) равна: 8/10*6=4,8 см.
1) найдём гипотенузу по теореме Пифагора: с=√(24^2+18^2)=√(576+324)=√900= 30; 2) биссектриса проведена к катету, равному 18 ( против меньшей стороны лежит меньший угол); 3) биссектриса делит катет на две части х и у; х+у=18 (х - ближе к прямому углу); 4) биссектриса делит катет на пропорциональные части: 24:х=30:у 30х=24у 5х=4у у=5х/4 (1) х+у=18 (2) подставим из (1) в (2): 5х/4 + х=18 5х+4х=18*4 9х=18*4 х=2*4=8 5) по теореме Пифагора найдём биссектрису (L): L=√(24^2+8^2)=√(576+64)=√640=√64*10=8√10 ответ: 8√10
Получится равнобедренный треугольник с основанием 12 и высотой 8. Рассмотрим "половинку" этого треугольника - прямоугольный треугольник с катетами, являющимися высотой конуса и радусом основания.
Из него находим длину образующей - это гипотенуза этого треугольника. То есть, образующая равна 10 (√(64+36)).
Проведем высоту из прямого угла к гипотенузе этого треугольника - это и есть искомое расстояние.
Рассмотрим прямоугольный треугольник, в котором радиус основания является гипотенузой, а один из катетов - искомая высота.
Этот треугольник подобен "половинке" первоначального треугольника, так как у него равны все углы (один - общий - между образующей и радиусом основания, второй - 90°, значит, равен и третий).
А, значит, отношение искомой высоты к радусу основания равно отношению высоты конуса к образующей, то есть искомая высота (расстояние от центра основания до образующей) равна:
8/10*6=4,8 см.