Обозначим BC за x. По теореме синусов sin<a/BC=sin<b/AB=sin<c/AC. sin<c=sin<90=1, из чего следует, что AB/sin<90=25/1 равно sin<a/BC=0,6/x. Найдем x по пропорции: x=25*0,6=15.
По теореме Пифагора найдем сторону AC: AC^2=AB^2-BC^2=25^2-15^2=625-225=400; AC=20.
Площадь прямоугольного треугольника находится по формуле AC*BC/2. S=15*20/2=300/2=150.
Площадь любого треугольника можно найти по формуле A*H/2, где A-сторона, а H-опущенная на нее высота. В нашем случае S=AB*CH/2. Выразим CH: CH=S*2/AB; CH=150*2/25=300/25=12.
Всего образовалось 8 углов, по 4 равных между собой.
∠1 и ∠2 не могут быть ни смежными, ни внутренними односторонними, так как их сумма не равна 180°. Значит, они или вертикальные, или внутренние разносторонние, или соответствующие и, следовательно, равны между собой. ∠1=∠2=102°:2=51° И еще два угла будут равны 51°.
Остальные четыре угла равны между собой. Они являются с уже известными углами или смежными, или внутренними односторонними, или соответствующими и равны 180°-51°=129°.
CH=12
Объяснение:
Обозначим BC за x. По теореме синусов sin<a/BC=sin<b/AB=sin<c/AC. sin<c=sin<90=1, из чего следует, что AB/sin<90=25/1 равно sin<a/BC=0,6/x. Найдем x по пропорции: x=25*0,6=15.
По теореме Пифагора найдем сторону AC: AC^2=AB^2-BC^2=25^2-15^2=625-225=400; AC=20.
Площадь прямоугольного треугольника находится по формуле AC*BC/2. S=15*20/2=300/2=150.
Площадь любого треугольника можно найти по формуле A*H/2, где A-сторона, а H-опущенная на нее высота. В нашем случае S=AB*CH/2. Выразим CH: CH=S*2/AB; CH=150*2/25=300/25=12.
ответ: 12
∠1 и ∠2 не могут быть ни смежными, ни внутренними односторонними, так как их сумма не равна 180°. Значит, они или вертикальные, или внутренние разносторонние, или соответствующие и, следовательно, равны между собой.
∠1=∠2=102°:2=51°
И еще два угла будут равны 51°.
Остальные четыре угла равны между собой. Они являются с уже известными углами или смежными, или внутренними односторонними, или соответствующими и равны 180°-51°=129°.
ответ. 51° и 129°.