Даны координаты вершин треугольника: А(х1; у1), В(х2; у2), С(х3; у3).
AM, BM – медианы треугольника, О – точка пересечения медиан.
Так как М – середина ВС, то её координаты: М(х2 + х3)/2; (у2 + у3)/2).
Находим координаты вектора АМ.
АМ = (((х2 + х3)/2) – х1; ((у2 + у3)/2)) – у1).
АМ = (((х2 + х3 – 2х1)/2); ((у2 + у3 – 2у1)/2)).
Далее используем свойство, что медианы точкой пересечения делятся в отношении 2 к 1, считая от вершины, то есть АО = 2*ОМ.
Тогда АО = (2/3) АМ.
Значит, координаты вектора АО равны:
АО = ((2/3)*((х2 + х3 – 2х1)/2); (2/3)*((у2 + у3 – 2у1)/2)).
АО = (((х2 + х3 – 2х1)/3); (((у2 + у3 – 2у1)/3)). (1)
Обозначим координаты точки О(хо; уо).
Выведем вектор АО через координаты точек А и О:
АО = ((хо – х1); (уо – у1)). (2)
Приравняем в выражениях (1) и (2) координаты точки О.
((хо – х1) = ((х2 + х3 – 2х1)/3),
(уо – у1) = ((у2 + у3 – 2у1)/3).
Отсюда получаем искомое выражение для определения координат точки пересечения медиан:
хо = ((х1 + х2 +х3)/3),
уо = ((у1 + у2 + у3)/3).
1 сторона - х см.
2 сторона = х + 2 см.
Решение :
х + х + 2 + х + х + 2 = 8,24
4х + 4 = 8,24
4х = 8,24 - 4
4х = 4,24
х = 1,06 (см).
1,06 + 2 = 3,06 (см).
ответ : Стороны прямоугольника равны 1,06см ; 3,06 см ; 1,06 с ; 3,06 см.
2. Р = 7,8 см.
1 сторона = х см.
2 сторона = 2х см.
Решение :
х + 2х + х + 2х = 7,8
6х = 7,8
х = 1,3 (см)
1,3 × 2 = 2,6 (см).
ответ : Стороны прямоугольника равны 1,3 см ; 2,6см ; 1,3 см ; 2,6 см.
3. Р = 6,4 см.
1 сторона = х см.
2 сторона = 3х см.
Решение :
х + 3х + х + 3х = 6,4
8х = 6,4
х = 0,8 ( см ).
0,8 × 3 = 2,4 ( см ).
ответ : Сторона прямоугольника равны 0,8 см ; 2,4 см ; 0,8 см ; 2,4 см.
Удачи
Даны координаты вершин треугольника: А(х1; у1), В(х2; у2), С(х3; у3).
AM, BM – медианы треугольника, О – точка пересечения медиан.
Так как М – середина ВС, то её координаты: М(х2 + х3)/2; (у2 + у3)/2).
Находим координаты вектора АМ.
АМ = (((х2 + х3)/2) – х1; ((у2 + у3)/2)) – у1).
АМ = (((х2 + х3 – 2х1)/2); ((у2 + у3 – 2у1)/2)).
Далее используем свойство, что медианы точкой пересечения делятся в отношении 2 к 1, считая от вершины, то есть АО = 2*ОМ.
Тогда АО = (2/3) АМ.
Значит, координаты вектора АО равны:
АО = ((2/3)*((х2 + х3 – 2х1)/2); (2/3)*((у2 + у3 – 2у1)/2)).
АО = (((х2 + х3 – 2х1)/3); (((у2 + у3 – 2у1)/3)). (1)
Обозначим координаты точки О(хо; уо).
Выведем вектор АО через координаты точек А и О:
АО = ((хо – х1); (уо – у1)). (2)
Приравняем в выражениях (1) и (2) координаты точки О.
((хо – х1) = ((х2 + х3 – 2х1)/3),
(уо – у1) = ((у2 + у3 – 2у1)/3).
Отсюда получаем искомое выражение для определения координат точки пересечения медиан:
хо = ((х1 + х2 +х3)/3),
уо = ((у1 + у2 + у3)/3).