ABC равнобедр. треугольник, АС основание=32см, АВ и ВС сотроны, равные 20см) Расстояние от вершины М до плоскости обозначим МО) А расстояние от М до стороны треугольника обозначим МК МК=5) Тогда мы видим прямоугольный треугольник, МО перпендикуляр, тогда найдем МО по теореме Пифагора МО=√МК²-ОК² ОК-радиус вписанной окружности равнобедр. треуг-ка ОК=√(р-а)²(р-в)/√р р-полупериметр, а-боковая сторона равная 20, в -основание равное 32) р=Р/2=2а+в/2=2*20+32/2=36см ОК=√(36-20)²(36-32)/√36=8/6=4/3см МО=√25-16/9=√209/√9=√209/3см
Объяснение:
1. Если внутренние накрест лежащие углы равны, то прямые параллельны.
∠70°=∠70° ⇒
a║b
2. Если сумма внутренних односторонних углов равна 180, то то прямые параллельны.
∠110+∠70=180°⇒
c║d
3. Если соответственные углы равны, то прямые параллельны.
∠a=∠a
MD║|NK
4. Если соответственные углы равны, то прямые параллельны.
∠90=∠90
m║n
5. Если внутренние накрест лежащие углы равны, то прямые параллельны.
BC║AD
AB║CD
6. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠EFL=∠FLK ⇒ EF║LK
∠EKF=∠KEL⇒ FK║EL
7. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠NPM=∠PMQ ⇒NP║MQ
∠NMP=∠MPQ⇒NM║PQ
8. ΔAOB=ΔCOD (по двум сторонам и углу между ними)⇒
∠BAO=∠ODC если внутренние накрест лежащие углы равны, то прямые параллельны
AB║CD
9. ΔOXY=ΔOYZ по трем сторонам ⇒
∠XYO=∠YOZ ⇒ XY║OZ
∠XOY=∠OYZ⇒ OX║YZ
10.
UR║ST (внутренние накрест лежащие углы равны)
ΔRUO=ΔOST (по стороне и двум прилежащим к ней углам) ⇒
∠TRU=∠STR ⇒ RS║UT
Расстояние от вершины М до плоскости обозначим МО) А расстояние от М до стороны треугольника обозначим МК МК=5) Тогда мы видим прямоугольный треугольник, МО перпендикуляр, тогда найдем МО по теореме Пифагора МО=√МК²-ОК²
ОК-радиус вписанной окружности равнобедр. треуг-ка ОК=√(р-а)²(р-в)/√р
р-полупериметр, а-боковая сторона равная 20, в -основание равное 32)
р=Р/2=2а+в/2=2*20+32/2=36см
ОК=√(36-20)²(36-32)/√36=8/6=4/3см
МО=√25-16/9=√209/√9=√209/3см