В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
svistmi20061
svistmi20061
15.02.2023 05:02 •  Геометрия

Параллельно стороне равнобедренного тре- угольника провели прямую. Докажите, что она от-
секает от него тоже равнобедренный треугольник. ​


Параллельно стороне равнобедренного тре- угольника провели прямую. Докажите, что она от-секает от не

Показать ответ
Ответ:
Pooster
Pooster
27.03.2021 14:50

ответ:Координаты точки указываются от начала координат по трем осям.Это:X;Y;Z

Так, по трем точкам X;Z;Y они равны соответственно 2;-3; 1

Три оси перпендикулярны между собой,это значит если ось перпендикулярна двум прямым,то получается что она перпендикулярна и поскости этих двух прямых.Далее рассмотрим плоскость YOZ.Прямая ОХ перпендикулярна ей,и по этой прямой,точка,находится в 2х условных ед. от плоскости ХОZ равным 3м, и от XOY равным ед.

Получам ответ 2;3;1

Объяснение:Почему в ответе число без минуса? ответ прост:Расстояние отрицательным быть не может.

0,0(0 оценок)
Ответ:
Natalii2017
Natalii2017
20.11.2021 03:58

Проведём сечение пирамиды через ось и боковое ребро SC.
Середина ребра SC это точка Е. Пересечение перпендикуляра  к этому ребру через точку Е с основанием это точка К, находящаяся на высоте основания СД. Получим прямоугольный треугольник ЕКС, в котором известна сторона ЕС = (1/2) SC = (1/2)*10 = 5.
В другом треугольнике SOC сторона ОС равна (2/3) высоты основания. Для правильного треугольника АВС этот отрезок равен (2/3)*12*cos30 = (2/3)*12*(√3/2) = 4√3.
Косинус угла С равен ОС/SC = 4√3/10 = 2√3/5.

Теперь можно определить гипотенузу СК в треугольнике ЕКС:

CК = ЕС/cosC = 5/(2√3/5) = 25/(2√3).

Так как СК лежит в плоскости основания на его высоте СД, то равные отрезки СР и СМ равны:

СР = СМ = СК / cos 30 = 25/(2√3) / (√3/2) = 25/3 = 8(1/3).

 В плоскости боковой грани ASC линией пересечения её с заданной секущей плоскостью будет отрезок ЕМ. Аналогично в плоскости грани ВSC это линия ЕР.

 Длину этих равных отрезков (они являются боковыми сторонами в треугольнике РЕМ, который и есть фигурой пересечения пирамиды с заданной плоскостью), находим по теореме косинусов по двум сторонам СЕ и СМ и косинусу угла между ними.

 Косинус угла α при основании боковой грани равен 6/10 = 3/5.

Тогда ЕМ = ЕР = √(ЕС² + СМ² - 2*ЕС*СМ*cos α) = 

√(5² + (25/3)² - 2*5*(25/3)*(3/5)) = 

= √((25*9 + (625/9) - 9*50)/9)  = √400 / 3 = 20/3.

Отрезок РМ находим из пропорции подобных треугольников САВ и СРМ:

РМ = СМ = 25/3 = 8(1/3).

ответ: Периметр треугольника, образованного сечением пирамиды плоскостью, перпендикулярной ребру SC в его середине, равен:

Р = (25/3) + 2*(20/3) = (25 + 40) / 3 = 65/3 = 21(2/3).

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота