Параллельные прямые с и в пересечены двумя параллельными секущими ав и сд, причем а и с принадлежат прямой с , в и д – прямой в .докажите, что ав=сд. с рисунком с даном с доказательство..
Обозначим наклонные a, b... т.к. наклонные образуют с плоскостью равные углы и проведены из одной точки, то эти наклонные равны... т.к. перпендикуляр, опущенный на плоскость, с одной стороны = a*sin(Ф) = b*sin(Ф) = h => a=b их проекции тоже равны (обозначим p)))... отрезок, соединяющий концы наклонных на плоскости --- (с) искомый угол (х)... угол между наклонной и плоскостью --- угол между наклонной и ее проекцией... из прямоугольного треугольника по определению косинуса можно записать: p = a*cos(Ф) по т.косинусов c^2 = 2*a^2 - 2*a^2*cos(β) = 2*a^2*(1 - cos(β)) c^2 = 2*p^2 - 2*p^2*cos(x) = 2*p^2*(1 - cos(x)) = 2*a^2*(cos(Ф))^2 * (1 - cos(x)) эти равенства можно приравнять... 1 - cos(x) = (1 - cos(β) / (cos(Ф))^2 cos(x) = 1 - (1 - cos(β) / (cos(Ф))^2 угол равен арккосинусу этого выражения...
Определите периметр прямоугольника, если его диагональ равна 2√10 м, а площадь 12 м²
Вариант решения (если уже знакомы с теоремой косинусов)
Площадь параллелограмма, а прямоугольник, как известно, - параллелограмм, можно найти разными в том числе по формуле
S=0,5•d₁•d₂•sin α /2, где d₁и d₂ - диагонали, α- угол между ними.
В прямоугольнике диагонали равны, поэтому
S=0,5•d²•sin α
12=0,5•(2√10)²•sin α⇒
sin α=2S:d²=24: 40=0,6
sin²α+cos²α=1⇒
cos α=√(1-0,36)=0,8
Теорема косинусов.
Квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними
Эта формула позволяет вычислить длину одной из сторон треугольника по данным длинам двух других сторон и величине угла, лежащего против неизвестной стороны.
Пусть данный прямоугольник АВСД, и О – точка пересечения его диагоналей.
АВ²=ВО²+АО²-2•BO•AO•cos α
В прямоугольнике диагонали равны и точкой пересечения делятся пополам, поэтому АО=ВО=d/2=√10⇒
т.к. наклонные образуют с плоскостью равные углы и проведены из одной точки, то эти наклонные равны...
т.к. перпендикуляр, опущенный на плоскость,
с одной стороны = a*sin(Ф) = b*sin(Ф) = h => a=b
их проекции тоже равны (обозначим p)))...
отрезок, соединяющий концы наклонных на плоскости --- (с)
искомый угол (х)...
угол между наклонной и плоскостью --- угол между наклонной и ее проекцией...
из прямоугольного треугольника по определению косинуса можно записать:
p = a*cos(Ф)
по т.косинусов c^2 = 2*a^2 - 2*a^2*cos(β) = 2*a^2*(1 - cos(β))
c^2 = 2*p^2 - 2*p^2*cos(x) = 2*p^2*(1 - cos(x)) = 2*a^2*(cos(Ф))^2 * (1 - cos(x))
эти равенства можно приравнять...
1 - cos(x) = (1 - cos(β) / (cos(Ф))^2
cos(x) = 1 - (1 - cos(β) / (cos(Ф))^2
угол равен арккосинусу этого выражения...
Определите периметр прямоугольника, если его диагональ равна 2√10 м, а площадь 12 м²
Вариант решения (если уже знакомы с теоремой косинусов)
Площадь параллелограмма, а прямоугольник, как известно, - параллелограмм, можно найти разными в том числе по формуле
S=0,5•d₁•d₂•sin α /2, где d₁и d₂ - диагонали, α- угол между ними.
В прямоугольнике диагонали равны, поэтому
S=0,5•d²•sin α
12=0,5•(2√10)²•sin α⇒
sin α=2S:d²=24: 40=0,6
sin²α+cos²α=1⇒
cos α=√(1-0,36)=0,8
Теорема косинусов.
Квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними
Эта формула позволяет вычислить длину одной из сторон треугольника по данным длинам двух других сторон и величине угла, лежащего против неизвестной стороны.
Пусть данный прямоугольник АВСД, и О – точка пересечения его диагоналей.
АВ²=ВО²+АО²-2•BO•AO•cos α
В прямоугольнике диагонали равны и точкой пересечения делятся пополам, поэтому АО=ВО=d/2=√10⇒
Тогда
AB²=10+10-2•(√10)•(√10)•0,8⇒
АВ²=4
АВ=СД=2 м
Из другой формулы площади прямоугольника
S=a•b найдем вторую сторону:
S=АД•AB
12=АД•2
ВС=АД=12:2=6 м
Р=2(AB+BC)=16 м