пажауста дам 60бНачертите координатную прямую с единичнымотрезкомдлиной 1 см. Отметьте на этой координатной прямой точки A(3,5), B(-4), C(5), K(-1,5). T(- 5.2) и P(0.8). Найдите длину отрезка ВС.
Назовем точку буквой М расстояние от М до плоскости - это перпендикуляр, опущенный в центр треугольника найдем сторону треугольника из формулы
a²=432 a=12√3
высота треугольника является его медианой (т к правильный), что позволяет найти нам ее по теореме Пифагора: (12√3)²=(6√3)²+h² h²=324 h=18
как уже говорилось, высота - это еще и медиана, а медиана в правильном треугольнике делится в отношении 2:1, считая от вершины
отсюда из прямоугольного треугольника, который образуется перпендикуляром, проведенным из точки М и 1/3*H и искомым расстоянием от точки до стороны, найдем расстояние, которое просят назовем это расстояние буквой F
Задача решается двумя Графически и алгебраически. приложение №1): Через точку С проводим диаметр окружности. Обозначаем его СМ. Проводим отрезок АМ. В треугольнике АМС угол А прямой (МС диаметр вписанного прямоугольного треугольника). АВДМ - трапеция (АМ||ВД), углы АВМ и АДМ равны (опираются на одну хорду АМ). Трапеция АВДМ - равнобедренная, АВ=МД=3 см. Треугольник МСД прямоугольный. МД=3 см, ДС=4 см, МС=√(3³+4³)=5 см. Радиус 5/2=2,5 см.
приложение №2): Радиус описанной окружности вокруг четырехугольника, равен радиусу описанной окружности любого треугольника, образованного сторонами этого четырехугольника. Радиус описанной окружности - R=a/2sinα , где а - сторона треугольника, α - противолежащий угол. Рассматриваем треугольник НВС, где Н точка пресечения диагоналей. Прямоугольный, угол Н (по условию), угол В - β, угол С - (90-β). R=СД/2sinβ=2/sinβ; R=АВ/2sin(90-β)=3/2cosβ. Делим одно выражение на другое. 3/2cosβ * sinβ/2=3tgβ/4=1, tgβ=4/3 R=2/sin(atgβ)=2.499999=2.5 см.
расстояние от М до плоскости - это перпендикуляр, опущенный в центр треугольника
найдем сторону треугольника из формулы
a²=432
a=12√3
высота треугольника является его медианой (т к правильный), что позволяет найти нам ее по теореме Пифагора:
(12√3)²=(6√3)²+h²
h²=324
h=18
как уже говорилось, высота - это еще и медиана, а медиана в правильном треугольнике делится в отношении 2:1, считая от вершины
отсюда из прямоугольного треугольника, который образуется перпендикуляром, проведенным из точки М и 1/3*H и искомым расстоянием от точки до стороны, найдем расстояние, которое просят
назовем это расстояние буквой F
F²=8²+(1/3*18)²=64+36=100
F=10
ответ: 10
приложение №1):
Через точку С проводим диаметр окружности. Обозначаем его СМ. Проводим отрезок АМ. В треугольнике АМС угол А прямой (МС диаметр вписанного прямоугольного треугольника). АВДМ - трапеция (АМ||ВД), углы АВМ и АДМ равны (опираются на одну хорду АМ). Трапеция АВДМ - равнобедренная, АВ=МД=3 см.
Треугольник МСД прямоугольный. МД=3 см, ДС=4 см, МС=√(3³+4³)=5 см.
Радиус 5/2=2,5 см.
приложение №2):
Радиус описанной окружности вокруг четырехугольника, равен радиусу описанной окружности любого треугольника, образованного сторонами этого четырехугольника.
Радиус описанной окружности -
R=a/2sinα , где а - сторона треугольника, α - противолежащий угол.
Рассматриваем треугольник НВС, где Н точка пресечения диагоналей.
Прямоугольный, угол Н (по условию), угол В - β, угол С - (90-β).
R=СД/2sinβ=2/sinβ;
R=АВ/2sin(90-β)=3/2cosβ.
Делим одно выражение на другое.
3/2cosβ * sinβ/2=3tgβ/4=1, tgβ=4/3
R=2/sin(atgβ)=2.499999=2.5 см.