№1 КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам. №2 Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град. ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2 2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС
Відповідь:
Пояснення:
1) знаходимо перетин прямих МN i BC, так як вони лежать в одній площині АВС, нехай це буде точка Р
2) точка Р належить також площині ВСС1, так як пряма ВС лежить в цій площині, тому можемо провести пряму РК
3) знаходимо перетин прямої РК з ребрами, або їх продовженнями, СС1 та ВВ1
4) якщо маємо перетин РК з ребрами СС1 та ВВ1, нехай це точки Е та Н, то перерізом буде площина МNЕН
4а) якщо маємо перетин з продовженням ребра, нехай ВВ1, маємо точку Н, яка є перетином В1С1 і РК, а перетин РК з ребром СС1 є точка Е
Так як площини АВС і А1В1С1 паралельні, то будуємо пряму ТН║МN
ТН в перетині з В1А1 дає точку Т
перерізом є МNЕНТ
КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам.
№2
Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН
КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град.
ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2
2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС