Периметр основи прямої призми дорівнює 12 см ,а площа бічної поверхні 48 кв .см.Знайдіть довжину бічного ребра цієї призми Периметр основи прямої призми дорівнює 12 см ,а площа бічної поверхні 48 кв .см.Знайдіть д">
Если прямая перпендикулярна плоскости, то она перпендикулярна к любой прямой, лежащей в этой плоскости. => DC перпендикулярна высоте СН прямоугольного ∆ АВС.
Расстояние от точки до прямой измеряется длиной отрезка, проведенного перпендикулярно от точки к данной прямой.
Высота СН - проекция наклонной DH.
По т. о 3-х пп СН⊥АВ => DH⊥АВ, DH - искомое расстояние.
А) Прямоугольные треугольники с соответственно равными острыми углами (а даже и с одним, так как второй - прямой) ПОДОБНЫ. Отношение площадей подобных фигур равно квадрату коэффициента подобия (отношению линейных размеров). Значит отношение гипотенуз равно √(2/3). Утверждение верное.
Б) Диагональ трапеции делит ее на два треугольника с одинаковой высотой, следовательно их площади относятся, как их основания, к которым проведена эта высота. Утверждение верное.
В). Медиана треугольника делит треугольник на два треугольника, у которых равны и основания, и высоты. Значит и их площади равны. Утверждение верное.
Г). Периметры равновеликих треугольников в общем случае НЕ равны. (Предыдущий пример с медианой, когда треугольник не равнобедренный - периметры разные). Утверждение НЕ верное.
ответ: 25 (ед. длины).
Объяснение:
Если прямая перпендикулярна плоскости, то она перпендикулярна к любой прямой, лежащей в этой плоскости. => DC перпендикулярна высоте СН прямоугольного ∆ АВС.
Расстояние от точки до прямой измеряется длиной отрезка, проведенного перпендикулярно от точки к данной прямой.
Высота СН - проекция наклонной DH.
По т. о 3-х пп СН⊥АВ => DH⊥АВ, DH - искомое расстояние.
Решение.
DH найдем через площадь ∆ АВС и его высоту СН.
Ѕ(АВС)=АС•ВС/2
Ѕ(АВС)=СН•АВ/2 ⇒ АС•ВС=СН•АВ
АВ=√(АС²+ВС²)=√(40²+30²)=50
АС•ВС=40•30=1200
СН=АС•ВС:АВ=1200:50=24
DH=√(DC^2+CH^2)=√(49+576)=25
DH=25.
Не верное утверждение Г.
Объяснение:
А) Прямоугольные треугольники с соответственно равными острыми углами (а даже и с одним, так как второй - прямой) ПОДОБНЫ. Отношение площадей подобных фигур равно квадрату коэффициента подобия (отношению линейных размеров). Значит отношение гипотенуз равно √(2/3). Утверждение верное.
Б) Диагональ трапеции делит ее на два треугольника с одинаковой высотой, следовательно их площади относятся, как их основания, к которым проведена эта высота. Утверждение верное.
В). Медиана треугольника делит треугольник на два треугольника, у которых равны и основания, и высоты. Значит и их площади равны. Утверждение верное.
Г). Периметры равновеликих треугольников в общем случае НЕ равны. (Предыдущий пример с медианой, когда треугольник не равнобедренный - периметры разные). Утверждение НЕ верное.