Периметр правильного шестиугольника вписанного в окружность равен 12√3. Найдите периметр правильного двенадцатиугольника, описанного около той же окружности.
В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Так как цилиндр описан вокруг призмы, то основания призмы вписаны в основания цилиндра, боковое ребро призмы является высотой цилиндра.
Площадь полной поверхности цилиндра - это сумма площади боковой поверхности и площади двух оснований:
Sпов = 2πRh + 2 · πR²
Центр окружности, описанной около прямоугольного треугольника лежит на середине гипотенузы. Значит, радиус основания цилиндра равен половине гипотенузы:
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
ответ: 337,5 см²
Объяснение:
Так как цилиндр описан вокруг призмы, то основания призмы вписаны в основания цилиндра, боковое ребро призмы является высотой цилиндра.
Площадь полной поверхности цилиндра - это сумма площади боковой поверхности и площади двух оснований:
Sпов = 2πRh + 2 · πR²
Центр окружности, описанной около прямоугольного треугольника лежит на середине гипотенузы. Значит, радиус основания цилиндра равен половине гипотенузы:
ΔАВС: ∠С = 90°, по теореме Пифагора:
АВ = √(АС² + ВС²) = √(9² + 12²) = √(81 + 144) = √225 = 15 см
R = 1/2 AB = 7,5 см
Большая грань призмы - грань, содержащая гипотенузу основания.
Так как диагональ прямоугольника АВВ₁А₁ делит прямой угол пополам, то АВВ₁А₁ - квадрат. Тогда
h = AA₁ = AB = 15 см
Sпов = 2πRh + 2 · πR² = 2π · 7,5 · 15 + 2π · 7,5² =
= 225π + 112,5π = 337,5π см²