Периметр треугольника abc равен 2. на стороне ac отмечена точка p, на стороне cp отмечена точка q так, что 2ap=ab, 2qc=bc. докажите что периметр треугольника bpq больше 1
1.Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны. 2.Рассмотрим две пары смежных углов а, с и с, b. Их сумма равна 2d. При этом углы a и b — вертикальные:
a+c=2d
b+c=2d
Из равности правых частей уравнений выплывает равенство их левых частей:
a+c=b+c
В этом равенстве в обеих его частях присутствует один и тот же c. Таким образом, можно от обеих частей данного равенства можно отнять c, при этом равенство останется правильным. Получим:
a=b
Полученный результат говорит о том, что вертикальные углы равны между собой. 3. в файле
В параллелограмме ABCD BD=10 см AB = 12 см. Найдите периметр ΔBOC ( О точка пересечения диагоналей) , если АС - BD = 8 см .
ответ: ( 14+2√17 ) см
Объяснение: АС - BD = 8 (см) ⇒ АС= BD + 8 см =10 см+8 см =18 см
P(ΔBOC) = BO + OC + BC = BD/2 +AC/2 + BC = 5+ 9 +BC = 14 + BC
* * * Диагонали параллелограмма точкой пересечения делятся пополам * * *
Определим сторону BC. Известно: 2(a²+b²) =d₁ ²+d₂²
2(AB² +BC²) =BD² + AC² ⇔ 2(12² +BC²) =10² + 18² ⇒ BC² =68 ;
BC =2√17 см
Окончательно: P(ΔBOC) = ( 14+2√17 ) ( см ) .
2.Рассмотрим две пары смежных углов а, с и с, b. Их сумма равна 2d. При этом углы a и b — вертикальные:
a+c=2d
b+c=2d
Из равности правых частей уравнений выплывает равенство их левых частей:
a+c=b+c
В этом равенстве в обеих его частях присутствует один и тот же c. Таким образом, можно от обеих частей данного равенства можно отнять c, при этом равенство останется правильным. Получим:
a=b
Полученный результат говорит о том, что вертикальные углы равны между собой.
3. в файле