Построим равнобедренный треугольник АВС с основание АС. Как сказано в условии, продлим основание в обе стороны на равные расстояния (точки Д и Е)
Докажем что треугольники АВД и СВД равные: АВ=ВС (так как АВС равнобедренный) АД=СЕ (по условию задачи) Угол ВАД=180-ВАС (как смежные) Угол ВСЕ=180-ВСА (как смежные) Так как углы ВАС=ВСА (как углы при основании равнобедренного треугольника), то и углы ВАД=ВСЕ. Треугольники АВД и СВД равные по первому признаку равенства (по двум сторонам и углу между ними). Значит ВД=ВЕ. Это доказывает что треугольник ВЕД - равнобедренный
ΔОСВ равносторонний. В нем углы при вершинах С и В равны.т.к. ОС=ОВ= радиусы одной окружности. Т.е. равнобедренный получается. но поскольку углы С и В еще и по 60°в, то и угол О в этом треугольнике 60 °. Тогда внешний угол АОВ равен сумме двух внутренних ∠ В и ∠С, с ним не смежными, т.е. он равен 60°+60°=120°, а тогда в равнобедренном треуг. АОВ ∠ А =∠ В= 30 °,
(180°-120°)/2=30°, как углы при основании равнобедренного ΔАОВ, т.к. АО и ВО радиусы одной окружности и ∠DАС = 90°, т.к. радиус, проведенный в точку касания перпендикулярен касательной АD, значит, искомый ∠ DАВ =90°-30°=60°
Как сказано в условии, продлим основание в обе стороны на равные расстояния (точки Д и Е)
Докажем что треугольники АВД и СВД равные:
АВ=ВС (так как АВС равнобедренный)
АД=СЕ (по условию задачи)
Угол ВАД=180-ВАС (как смежные)
Угол ВСЕ=180-ВСА (как смежные)
Так как углы ВАС=ВСА (как углы при основании равнобедренного треугольника), то и углы ВАД=ВСЕ.
Треугольники АВД и СВД равные по первому признаку равенства (по двум сторонам и углу между ними).
Значит ВД=ВЕ.
Это доказывает что треугольник ВЕД - равнобедренный
ΔОСВ равносторонний. В нем углы при вершинах С и В равны.т.к. ОС=ОВ= радиусы одной окружности. Т.е. равнобедренный получается. но поскольку углы С и В еще и по 60°в, то и угол О в этом треугольнике 60 °. Тогда внешний угол АОВ равен сумме двух внутренних ∠ В и ∠С, с ним не смежными, т.е. он равен 60°+60°=120°, а тогда в равнобедренном треуг. АОВ ∠ А =∠ В= 30 °,
(180°-120°)/2=30°, как углы при основании равнобедренного ΔАОВ, т.к. АО и ВО радиусы одной окружности и ∠DАС = 90°, т.к. радиус, проведенный в точку касания перпендикулярен касательной АD, значит, искомый ∠ DАВ =90°-30°=60°
ответ 60 °
Объяснение: