Пирамида пересечена плоскостью, параллельной основанию. Площадь основания равна 1280дм^2, а площадь сечения равна 5дм^2. В каком отношении, считая от вершины, плоскость сечения делит высоту пирамиды?
Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
См. рисунок в приложении. Обозначим стороны прямоугольника MK=CN=х и MC=KN=у Тогда S(прямоугольника)=x·y Из подобия прямоугольных треугольников АВС и AKM AM:AC=MK:CB
5x=8(5-y) 5x=40-8y x=(40-8y)/5
S=(40-8y)·y/5 S(y)=(40y-8y²)/5 Исследуем эту функцию на экстремум. Находим производную. S`(y)=(40-16y)/5 Приравниваем ее к нулю 40-16у=0 у=2,5- точка максимума, так как производная при переходе через эту точку меняет знак с + на - слева от точки 2,5: S`(1)=34/5 >0 справа от точки 2,5: S`(4)=-24/5<0
x=(40-8y)/5=(40-8·2,5)/5=4 ответ. S=4·2,5=10 кв см - наибольшая площадь
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.
Обозначим стороны прямоугольника
MK=CN=х
и
MC=KN=у
Тогда
S(прямоугольника)=x·y
Из подобия прямоугольных треугольников
АВС и AKM
AM:AC=MK:CB
5x=8(5-y)
5x=40-8y
x=(40-8y)/5
S=(40-8y)·y/5
S(y)=(40y-8y²)/5
Исследуем эту функцию на экстремум.
Находим производную.
S`(y)=(40-16y)/5
Приравниваем ее к нулю
40-16у=0
у=2,5- точка максимума, так как производная при переходе через эту точку меняет знак с + на -
слева от точки 2,5: S`(1)=34/5 >0
справа от точки 2,5: S`(4)=-24/5<0
x=(40-8y)/5=(40-8·2,5)/5=4
ответ. S=4·2,5=10 кв см - наибольшая площадь