Площадь осевого сечения цилиндра равна А, а угол между диагональю этого сечения и образующей цилиндра равен α. Найдите площадь полной поверхности и объем цилиндра.
Длина L бокового ребра пирамиды равна:L = H/sinα = 6/(√2/2) = 6√2 см. б) Площадь боковой поверхности.Так как боковое ребро образует угол 45 градусов с плоскостью основания, то половина диагонали основания равна высоте пирамиды:(d/2) = H = 6 см.Сторона а основания (это квадрат) равна:а = 2*(d/2)*sin45° = 2*6*(√2/2) = 6√2 см.Периметр основания Р = 4а = 24√2 см.Апофема А = √(Н² + (а/2)²) = √(36 + 18) = √54 = 3√6 см.Sбок = (1/2)РА = (1/2)*24√2*3√6 = 72√3 см². в) Объём пирамиды V = (1/3)SoH = (1/3)a²H = (1/3)*72*6 = 144 см³.
За ознакою паралельності площин (чи не ознака, а властивість- за рік уже забула. просто подивись в книжці), якщо 2 прямі, що перетинаються однієї площини паралельні 2 прямим, що перетинаються в іншій площині, то ці площини паралельні. Ми можемо провести в площині а 2 прямі, паралельні даним, отже, площина, в якій лежить трикутник, паралельна пл. а. То, так как як третя сторона належить площині трикутника, то за (якоюсь там ознакою чи властивістю): будь яка пряма, що лежить на площині, паралельній даній, паралельна цій даній площині. Отже, сторона паралельна площині а, що і треба було довести
б) Площадь боковой поверхности.Так как боковое ребро образует угол 45 градусов с плоскостью основания, то половина диагонали основания равна высоте пирамиды:(d/2) = H = 6 см.Сторона а основания (это квадрат) равна:а = 2*(d/2)*sin45° = 2*6*(√2/2) = 6√2 см.Периметр основания Р = 4а = 24√2 см.Апофема А = √(Н² + (а/2)²) = √(36 + 18) = √54 = 3√6 см.Sбок = (1/2)РА = (1/2)*24√2*3√6 = 72√3 см².
в) Объём пирамиды V = (1/3)SoH = (1/3)a²H = (1/3)*72*6 = 144 см³.