Начертить окружность (или ее часть) с центром в вершине угла так, чтобы она пересекла стороны угла.Замерить циркулем расстояние между точками пересечения сторон угла с окружностью.Начертить две окружности (или их части) радиусом, полученным в п. 2, вершины которых находятся в точках пересечения сторон угла с окружностью, полученной в п. 1. Эти две окружности (или их части) должны иметь точку пересечения внутри угла.Провести луч из вершины угла так, чтобы он через точку пересечения окружностей, полученную в п. 3. Этот луч и будет биссектрисой угла.
Вероятно, в задаче идет речь о построении перпендикуляра к прямой, проходящего через данную точку на прямой, с циркуля и линейки.
Дано: прямая а, точка А, принадлежащая прямой.
1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С. 2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С. 3) Через точки пересечения этих окружностей (К и Н) проведем прямую b. Прямая b - искомый перпендикуляр к прямой а.
Доказательство: А - середина отрезка ВС по построению (АВ = АС как радиусы одной окружности). Тогда КА - медиана треугольника ВКС. Треугольник ВКС равнобедренный, так как ВК = СК как равные радиусы. Значит медиана КА является и высотой, т.е. КА⊥а. Приложение
Начертить окружность (или ее часть) с центром в вершине угла так, чтобы она пересекла стороны угла.Замерить циркулем расстояние между точками пересечения сторон угла с окружностью.Начертить две окружности (или их части) радиусом, полученным в п. 2, вершины которых находятся в точках пересечения сторон угла с окружностью, полученной в п. 1. Эти две окружности (или их части) должны иметь точку пересечения внутри угла.Провести луч из вершины угла так, чтобы он через точку пересечения окружностей, полученную в п. 3. Этот луч и будет биссектрисой угла.
Дано: прямая а, точка А, принадлежащая прямой.
1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С.
2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С.
3) Через точки пересечения этих окружностей (К и Н) проведем прямую b.
Прямая b - искомый перпендикуляр к прямой а.
Доказательство:
А - середина отрезка ВС по построению (АВ = АС как радиусы одной окружности). Тогда КА - медиана треугольника ВКС.
Треугольник ВКС равнобедренный, так как ВК = СК как равные радиусы. Значит медиана КА является и высотой, т.е. КА⊥а.
Приложение