Угол С - прямой, угол А=30 град, АВ - гипотенуза, ВС - катет, лежащий напротив угла А=30 град. Найти ВС. Катет, лежащий напротив угла 30 град равен половине гипотенузы. Гипотенузу АВ принимаем за Х, тогда катет ВС=Х/2. S=АС*ВС / 2, т.е. 1058 корень из 3 = АС*ВС / 2. Находим АС по т.Пифагора: АС^2= АВ^2 - ВC^2= Х^2 - (Х/2)^2= Х^2 - Х^2 / 4. Отсюда, АС = Х*корень из 3 / 2. Теперь в формулу площади (см.выше) подставляем полученное значение АС и ВС. Преобразовав, получаем уравнение: корень из 3 * Х^2 / 8 = 1058 корень из 3. Отсюда, Х^2 = 8464, Х = -92 и Х = 92. Х= -92 не удовлетворяет условию, т.к. сторона не может иметь отрицательное значение длины, поэтому отбрасываем это значение. Итак, за Х мы принимали гипотенузу АВ, т.е.АВ=92, значит, катет ВС=Х/2 = 92/2=46.
В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Катет, лежащий напротив угла 30 град равен половине гипотенузы. Гипотенузу АВ принимаем за Х, тогда катет ВС=Х/2.
S=АС*ВС / 2, т.е. 1058 корень из 3 = АС*ВС / 2. Находим АС по т.Пифагора: АС^2= АВ^2 - ВC^2= Х^2 - (Х/2)^2= Х^2 - Х^2 / 4. Отсюда, АС = Х*корень из 3 / 2. Теперь в формулу площади (см.выше) подставляем полученное значение АС и ВС. Преобразовав, получаем уравнение: корень из 3 * Х^2 / 8 = 1058 корень из 3. Отсюда, Х^2 = 8464, Х = -92 и Х = 92. Х= -92 не удовлетворяет условию, т.к. сторона не может иметь отрицательное значение длины, поэтому отбрасываем это значение. Итак, за Х мы принимали гипотенузу АВ, т.е.АВ=92, значит, катет ВС=Х/2 = 92/2=46.
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.