Плоскость α пересекает стороны КМ и МЕ треугольника КМЕ в точках А и В соответственно и параллельна стороне КЕ. Найдите длину отрезка КЕ, если АВ=10 см и КА:АМ=5:2.
Расстояние от точки до плоскости – длина перпендикуляра, опущенного из точки на эту плоскость. 1) Обозначим расстояние от В до плоскости - ВС, от М до плоскости - МН. АС= проекция АВ на плоскость, ⇒ А, Н и С лежат на одной прямой. Отрезки, перпендикулярные плоскости , параллельны. Угол М=углу В как углы при пересечении параллельных МН и ВС секущей АВ, углы Н и С прямые, угол А общий для ∆ АМН и ∆ АВС ⇒ они подобны. Из подобия следует АВ:АМ=ВС:МН=(2+3):2⇒ ВС:МН=5:2 МН=2•(12,5:5)=5 м Если АВ - перпендикуляр к плоскости, то расстояние от нее до В=12,5, а до М равно 2/5 от АВ и равно 5 м. –––––––––––––––––––––––––––––––––––––– 2)Пусть наклонные будут: ВС=а, ВА=а+6 ВН- расстояние от общего конца В до плоскости. Т.к. это расстояние общее, ВН⊥ плоскости, то из прямоугольного ∆ АВН ВН²=АВ²-АН² из прямоугольного ∆ ВСН ВН²=ВС²-НС²⇒ АВ²-АН²=ВС²-НС² (а+6)²-17²=а²-7² ⇒ решив уравнение, получим 12а=204 а=17 см ВС=17 см АВ=17+6=23 см ––––––––––––––––––––– 3) Пусть эти опоры КМ=4 м, ТЕ=8 м, МЕ=3 м. Т.к. обе вертикальные, то они параллельны. Т - выше К на 4м, расстояние между К и точкой Р на ТЕ=3м, ∆ КТР с отношением катетов 3:4 - египетский ⇒ гипотенуза КТ=5 м ( проверка по т.Пифагора даст тот же результат). ответ - 5 м.
Для вирішення цього завдання, спочатку знайдемо більшу основу трапеції, використовуючи властивість, що коло вписане в прямокутну трапецію розташоване на серединній лінії.
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції: Р = (6 + х) / 2, де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння: 4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2: 8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння: х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції: S = (a + b) * h / 2, де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола): S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
1) Обозначим расстояние от В до плоскости - ВС,
от М до плоскости - МН.
АС= проекция АВ на плоскость, ⇒ А, Н и С лежат на одной прямой.
Отрезки, перпендикулярные плоскости , параллельны.
Угол М=углу В как углы при пересечении параллельных МН и ВС секущей АВ, углы Н и С прямые,
угол А общий для ∆ АМН и ∆ АВС ⇒ они подобны.
Из подобия следует АВ:АМ=ВС:МН=(2+3):2⇒
ВС:МН=5:2
МН=2•(12,5:5)=5 м
Если АВ - перпендикуляр к плоскости, то расстояние от нее до В=12,5, а до М равно 2/5 от АВ и равно 5 м.
––––––––––––––––––––––––––––––––––––––
2)Пусть наклонные будут:
ВС=а, ВА=а+6
ВН- расстояние от общего конца В до плоскости.
Т.к. это расстояние общее, ВН⊥ плоскости, то
из прямоугольного ∆ АВН
ВН²=АВ²-АН²
из прямоугольного ∆ ВСН
ВН²=ВС²-НС²⇒
АВ²-АН²=ВС²-НС²
(а+6)²-17²=а²-7²
⇒ решив уравнение, получим
12а=204
а=17 см
ВС=17 см
АВ=17+6=23 см
–––––––––––––––––––––
3) Пусть эти опоры КМ=4 м, ТЕ=8 м, МЕ=3 м.
Т.к. обе вертикальные, то они параллельны.
Т - выше К на 4м, расстояние между К и точкой Р на ТЕ=3м,
∆ КТР с отношением катетов 3:4 - египетский ⇒ гипотенуза КТ=5 м ( проверка по т.Пифагора даст тот же результат).
ответ - 5 м.
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції:
Р = (6 + х) / 2,
де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння:
4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2:
8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння:
х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції:
S = (a + b) * h / 2,
де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола):
S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
Отже, площа трапеції дорівнює 16 см².