Плоскости двух прямоугольных равнобедренных треугольников с общей гипотенузой AB = a перпендикулярны. Найдите расстояние между вершинами прямых углов, если: 1. а = 10 см; 2. a = 18 см; 3. а = 22 см
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
BC = 5; AB = 10 => BC - AB*2, тоесть, катет равен половине гипотенузы, тоесть противоположный катету угол равен 30 градусов.
BC = AD*2 => <A = 30°
<B = 90-30 = 60°.
Высота DC — образовывает 2 прямых угла — <BDC == <ADC = 90°.
<ADC = 90° => <BCD = 90-60 = 30°.
Вывод: <BCD = 30°.
132.
Как мы видим — <DOC & <AOB — вертикальные углы, тоесть друг другу равны.
А по какому-то там признаку равенства прямоугольных треугольников: если катеты двух треугольников, и один острый угол из каждого из них — равен другому, то треугольники равны, что и означает, гипотенузы AO & OD — равны, тоесть: AO == OD = 12.
Вывод: OD = 12.
134.
Так как в треугольниках EFK & DAK — есть 2 равных угла(<FEK; <AKD), и 2 равных стороны(BF; DA), то по признаку равеснства треугольников: ΔEFB == ΔDAK, тоесть — их гипотенузы равны.
И так как накрест лежащие углы также другу равны, то стороны EF & DK — параллельны, по первому признаку параллельности прямых.
Так как <FEK == <AKD, то: <DEK == <EFK, тоесть, накрест лежащие углы друг другу равны, что и означает, что: DE ║FK. И так как в нашем четырёхугольнике — противоположные стороны попарно параллельны, то четырёхугольник — параллелограмм, а в параллелограмме — противоположные стороны равны, тоесть: DE == FK.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
143.
<D = 90° => <M = 90-60 = 30°.
По теоереме 30-градусного угла прямогуольного треугольника: Катет, противолежащий углу 30-градусов в прямоугольном треугольнике — равен половине гипотенузы.
Тоесть: DS = MD/2 => MD = DS*2 = 28*2 = 56.
Вывод: MD = 56.
144.
<BDA = 120° => <ADC = 60° => <DAC = 30° => DC = AD/2 = 12/2 = 6.
<BDA = 120° => <BAD = 180-(<BDA + <ABD) = 30° => <BAD == <ABD = 30°.
<BAD == <ABD => AD == BD = 12.
BD + DC = 12+6 = 18. (Первая картинка)
Вывод: Катет BC = 18.
145.
BC = 5; AB = 10 => BC - AB*2, тоесть, катет равен половине гипотенузы, тоесть противоположный катету угол равен 30 градусов.
BC = AD*2 => <A = 30°
<B = 90-30 = 60°.
Высота DC — образовывает 2 прямых угла — <BDC == <ADC = 90°.
<ADC = 90° => <BCD = 90-60 = 30°.
Вывод: <BCD = 30°.
132.
Как мы видим — <DOC & <AOB — вертикальные углы, тоесть друг другу равны.
А по какому-то там признаку равенства прямоугольных треугольников: если катеты двух треугольников, и один острый угол из каждого из них — равен другому, то треугольники равны, что и означает, гипотенузы AO & OD — равны, тоесть: AO == OD = 12.
Вывод: OD = 12.
134.
Так как в треугольниках EFK & DAK — есть 2 равных угла(<FEK; <AKD), и 2 равных стороны(BF; DA), то по признаку равеснства треугольников: ΔEFB == ΔDAK, тоесть — их гипотенузы равны.
И так как накрест лежащие углы также другу равны, то стороны EF & DK — параллельны, по первому признаку параллельности прямых.
Так как <FEK == <AKD, то: <DEK == <EFK, тоесть, накрест лежащие углы друг другу равны, что и означает, что: DE ║FK. И так как в нашем четырёхугольнике — противоположные стороны попарно параллельны, то четырёхугольник — параллелограмм, а в параллелограмме — противоположные стороны равны, тоесть: DE == FK.