Плоскости α и β параллельны. С точки М, не принадлежит этим плоскостям и не находится между ними, проведено 2 лучи. Один из них пересекает плоскости α и β в точках А1 и B1, а второй в точках А2, В2. Найдите длину отрезка MA2, если MB2 = 14см и MA1/MB1 = 2/7 Умоляшки
ответ: S тр. ABCD = 300 ед.кв.
Объяснение: Проведём из т.A к большему основанию BC высоту AM.
Отрезок DC не только боковая сторона прямоугольной трапеции ABCD, но и высота этой трапеции.
DC ⊥ BC; AM ⊥ BC ⇒ DC ║ AM ⇒ CD = AM = 15 ед.
Т.к. AM - высота ⇒ ΔAMB - прямоугольный.
Найдём катет MB по т.Пифагора:
MB = √(AB² - AM²) = √(25² - 15²) = √(625 - 225) = √400 = 20 ед.
CM = AD, т.к. AM отсекает от трапеции ABCD прямоугольник DAMC.
Пусть x ед. меньшее основание трапеции (AD), тогда (x+20) ед. равно большее основание трапеции (BC). AB+BC+CD+AD=80 ед.
25 + (x + 20) + 15 + x = 80; 60 + 2x = 80; 2x = 20; x = 10
Если меньшее основание AD прямоугольной трапеции ABCD составляет 10 ед. ⇒ большее основание BC = 30 ед.
Формула площади нашей прямоугольной трапеции : (AD+BC)/2*AM.
⇒ S тр. ABCD = (10 + 30)/2 * 15 = 40/2 * 15 = 20 * 15 = 300 ед.кв.
Выясним соотношения между катетами и гипотенузой треугольника. Пусть гипотенуза равна 2х, тогда один катет равен х(тот, что лежит против угла в 30гр.), а другой 2х · cos 30 = 2x·0.5√3 = x√3/
Радиус вписанной в прямоугольник окружности равен
r = ( a + b - c):2, где а и b -катеты, а с - гипотенуза.
r = ( х + х√3 - 2х):2 = 0,5х(√3 - 1)
0,5х(√3 - 1) = 4
Отсюда х = 8/(√3 - 1)
Периметр треугольника: Р = 2х + х + х√3 = х(3 + √3). Полупериметр р = 0,5х(3 + √3)
Площадь треугольника S = r·p = 4·0,5х(3 + √3) = 2х(3 + √3)
Подставим х = 8/(√3 - 1) и получим
S = 2·(3 + √3)·8/(√3 - 1)
S = 16√3·(√3 + 1)/(√3 - 1)
Объяснение: