Три стороны одинаковые, AB = BC = CD. Четвертая сторона равна обоим диагоналям, AD = AC = BD. Вот я примерно нарисовал этот 4-угольник. Треугольник ABC равнобедренный с углами y (гамма). Треугольник BCD равнобедренный с углами b (бета). Треугольник ABD равнобедренный с углами a+y (a - альфа). Треугольник ACD равнобедренный с углами a+b. Получаем систему { a + (a + y) + (a + y) = 3a + 2y = 180 (ABD) { a + (a + b) + (a + b) = 3a + 2b = 180 (ACD) { (y + (a+b)) + b + b = a + y + 3b = 180 (BCD) { ((a+y) + b) + y + y = a + b + 3y = 180 (ABC) Из 1 уравнения вычитаем 2 уравнение 2y - 2b = 0 b = y Подставляем { 3a + 2b = 180 { a + 4b = 180 Из 1 уравнения вычитаем 2 уравнение 2a - 2b = 0 a = b То есть все три угла равны друг другу a = b = y 3a + 2a = 5a = 180 a = b = y = 180/5 = 36 градусов. Самый большой угол y + (a+b) = 3a = 3*36 = 108 градусов.
Четвертая сторона равна обоим диагоналям, AD = AC = BD.
Вот я примерно нарисовал этот 4-угольник.
Треугольник ABC равнобедренный с углами y (гамма).
Треугольник BCD равнобедренный с углами b (бета).
Треугольник ABD равнобедренный с углами a+y (a - альфа).
Треугольник ACD равнобедренный с углами a+b.
Получаем систему
{ a + (a + y) + (a + y) = 3a + 2y = 180 (ABD)
{ a + (a + b) + (a + b) = 3a + 2b = 180 (ACD)
{ (y + (a+b)) + b + b = a + y + 3b = 180 (BCD)
{ ((a+y) + b) + y + y = a + b + 3y = 180 (ABC)
Из 1 уравнения вычитаем 2 уравнение
2y - 2b = 0
b = y
Подставляем
{ 3a + 2b = 180
{ a + 4b = 180
Из 1 уравнения вычитаем 2 уравнение
2a - 2b = 0
a = b
То есть все три угла равны друг другу
a = b = y
3a + 2a = 5a = 180
a = b = y = 180/5 = 36 градусов.
Самый большой угол
y + (a+b) = 3a = 3*36 = 108 градусов.
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².