По разные стороны от центра шара проведены два параллельных сечения с площадями 4 π см2 и 25 π см2 соответственно.Расстояние между сечениями равно 6см.Определите объём получившегося шаровогослоя.
Разница двух углов,образовавшихся при пересечении двух прямых, равна 24°. Найдите все углы.
Решение
Определение: если стороны одного угла являются продолжением сторон другого угла, то такие углы называются вертикальными.
Следствие: вертикальные углы не имеют общих сторон.
Основное свойство вертикальных углов: вертикальные углы равны.
Определение: смежные углы - это пара углов с общей вершиной и одной общей стороной. Две другие стороны составляют продолжение одна другой и образуют прямую линию.
Основное свойство смежных углов: два смежных угла вместе составляют развёрнутый угол (180°).
1) Обозначим углы, образовавшиеся при пересечении 2-х прямых:
Объяснение:
Соединим А и В, С и D. Четырехугольник ABCD - вписанный, значит <ABC+<ADC=180° и <CDM+<ADC=180°, значит <ABC=<CDM. Аналогично <BAD=<DCM.
Из тр-ка △CMD <CMD(AMB)=180-<CDM-<DCM=180-<ABC-<BAD
<ABC=1/2*(AD+CD); <BAD=1/2(BC+CD).
<AMB=180-1/2*(AD+CD)-1/2*(BC+CD)=180-1/2*(AD+CD+BC)-1/2*CD
Для дуг окружности можно записать:
AD+CD+BC=360-AB - подставим в последнее выражение:
<AMB=180-1/2*(360-АВ)-1/2*СD=180-180+1/2*АВ-1/2*СD=1/2*(AB-CD)=1/2*(ALB-CKD)
∠1 = 102°; ∠2 = 78°; ∠3 = 102°; ∠4 = 78°.
Пошаговое объяснение:
Задание
Разница двух углов,образовавшихся при пересечении двух прямых, равна 24°. Найдите все углы.
Решение
Определение: если стороны одного угла являются продолжением сторон другого угла, то такие углы называются вертикальными.
Следствие: вертикальные углы не имеют общих сторон.
Основное свойство вертикальных углов: вертикальные углы равны.
Определение: смежные углы - это пара углов с общей вершиной и одной общей стороной. Две другие стороны составляют продолжение одна другой и образуют прямую линию.
Основное свойство смежных углов: два смежных угла вместе составляют развёрнутый угол (180°).
1) Обозначим углы, образовавшиеся при пересечении 2-х прямых:
∠1 = х°,
∠2 = х° -24° - угол, смежный с ∠1 ;
∠3 = ∠1 = х° - угол, вертикальный с ∠1;
∠4 = ∠2 = х° -24° - угол, вертикальный с ∠2.
2) ∠1 + ∠2 = 180°
х° + х° -24° = 180°
2х = 204°
х° = 102°
х° - 24° = 102° - 24° = 78°.
3) Таким образом:
∠1 = 102°;
∠2 = 78°;
∠3 = 102°;
∠4 = 78°.
ответ: ∠1 = 102°; ∠2 = 78°; ∠3 = 102°; ∠4 = 78°.
Объяснение: