По рисунку 2, ABCD - параллелограмм. Известно, что площадь треугольника AMD=24см². Найдите площадь треугольника OCD если известно, что AM = 10 см, а DC = 2.5 см
Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки.
Периметр — общая длина границы фигуры.
Два и более треугольника можно назвать равными в том случае если у них стороны соответствующие стороны и углы равны.
Теорема - это математическое утверждение, истинность которого установлена путём доказательства.
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
6)Отрезок, образующий с данной прямой угол 90 градусов.
7)Через данную точку к данной прямой можно провести перпендикуляр и только один. А если предположить, что можно провести, скажем, два перпендикуляра из заданной точки, то в получившемся треугольнике будет два прямых угла, что невозможно.
8)медианой-отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
9)Треугольник имеет три медианы
10)Биссектриса треугольника - отрезок биссектрисы одного из его углов до ее пересечения с противолежащей стороной треугольника.
11)3 биссектрисы
12)Перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.
13)3 высоты
14)Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине.Боковыми называются равные стороны, а последняя неравная им сторона — основанием.
15)Треугольник у которого все стороны равны между собой
16)Свойства равнобедренного треугольника. Свойство первое. В равнобедренном треугольнике углы при основании равны. Доказательство теоремы: Дан равнобедренный ΔABC, в котором AB = AC. К его основанию проведена биссектриса AD. Так как AD является биссектрисой, соответственно, угол ∠1 будет равен углу ∠2. Сторона AD – общая для ΔADB и ΔADC.
17) В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
18)Если сторона и прилежащие к ней углы одного треугольника соответственно равны стороне и прилежащим к ней углам другого треугольника то такие треугольники равны.
19)Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.
20)Определение – это первичное описание объекта.
21)Окружность - геометрическое место точек, равноудаленных от одной точки, называемой центром.
Хорда, проходящая через центр окружности, называется диаметром Диаметр — это хорда на окружности, и проходящий через центр этой окружности . Также диаметром называют длину этого отрезка.
Радиус — отрезок, соединяющий центр окружности (или с любой точкой, лежащей на окружности (или сфере), а также длина этого отрезка.
Задача в одно действие. Основания трапеции AB и CD. Если продолжить AB за точку B, и DM за точку M, до их пересечения в точке D1, то очевидно DM = D1M; Тут можно кучу обоснований дать, например, равны треугольники AMD и BMD1 по КУЧЕ углов (это очевидно подобные треугольники, то есть у них все углы равны) и одной стороне BM = CM; На самом деле есть "более старшее"обоснование. параллельные прямые делят пропорционально ВСЕ секущие, а тут "неявно" присутствует еще одна параллельная - средняя линия, содержащая точку M. Вот после этого очевидно, что если также продолжить DC и AM до пересечения в точке A1, то A1M = AM; То есть получился параллелограмм AD1A1D; (диагонали делятся пополам точкой пересечения). В силу упомянутого равенства треугольников AMD и BMD1; упомянутая в задаче сумма площадей равна площади треугольника D1MA; Диагонали делят параллелограмм на 4 треугольника, равных по площади, то есть упомянутая сумма равна также площади треугольника DMA, а это уже закрывает вопрос задачи.
Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки.
Периметр — общая длина границы фигуры.
Два и более треугольника можно назвать равными в том случае если у них стороны соответствующие стороны и углы равны.
Теорема - это математическое утверждение, истинность которого установлена путём доказательства.
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
6)Отрезок, образующий с данной прямой угол 90 градусов.
7)Через данную точку к данной прямой можно провести перпендикуляр и только один. А если предположить, что можно провести, скажем, два перпендикуляра из заданной точки, то в получившемся треугольнике будет два прямых угла, что невозможно.
8)медианой-отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
9)Треугольник имеет три медианы
10)Биссектриса треугольника - отрезок биссектрисы одного из его углов до ее пересечения с противолежащей стороной треугольника.
11)3 биссектрисы
12)Перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.
13)3 высоты
14)Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине.Боковыми называются равные стороны, а последняя неравная им сторона — основанием.
15)Треугольник у которого все стороны равны между собой
16)Свойства равнобедренного треугольника. Свойство первое. В равнобедренном треугольнике углы при основании равны. Доказательство теоремы: Дан равнобедренный ΔABC, в котором AB = AC. К его основанию проведена биссектриса AD. Так как AD является биссектрисой, соответственно, угол ∠1 будет равен углу ∠2. Сторона AD – общая для ΔADB и ΔADC.
17) В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
18)Если сторона и прилежащие к ней углы одного треугольника соответственно равны стороне и прилежащим к ней углам другого треугольника то такие треугольники равны.
19)Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.
20)Определение – это первичное описание объекта.
21)Окружность - геометрическое место точек, равноудаленных от одной точки, называемой центром.
Хорда, проходящая через центр окружности, называется диаметром Диаметр — это хорда на окружности, и проходящий через центр этой окружности . Также диаметром называют длину этого отрезка.
Радиус — отрезок, соединяющий центр окружности (или с любой точкой, лежащей на окружности (или сфере), а также длина этого отрезка.
22)
Основания трапеции AB и CD. Если продолжить AB за точку B, и DM за точку M, до их пересечения в точке D1, то очевидно DM = D1M;
Тут можно кучу обоснований дать, например, равны треугольники AMD и BMD1 по КУЧЕ углов (это очевидно подобные треугольники, то есть у них все углы равны) и одной стороне BM = CM;
На самом деле есть "более старшее"обоснование. параллельные прямые делят пропорционально ВСЕ секущие, а тут "неявно" присутствует еще одна параллельная - средняя линия, содержащая точку M.
Вот после этого очевидно, что если также продолжить DC и AM до пересечения в точке A1, то A1M = AM;
То есть получился параллелограмм AD1A1D; (диагонали делятся пополам точкой пересечения). В силу упомянутого равенства треугольников AMD и BMD1; упомянутая в задаче сумма площадей равна площади треугольника D1MA;
Диагонали делят параллелограмм на 4 треугольника, равных по площади, то есть упомянутая сумма равна также площади треугольника DMA, а это уже закрывает вопрос задачи.