Вот пришло в голову решение :) Так-то задачка ерундовая :) Я продлеваю перпендикуляры HK и HM за точку H до пересечения с BA в точке A1 и BC в точке C1 (ну, точки лежат на продолжениях... из за того, что ∠ABC острый, эти точки есть и лежат где положено :) ) Для треугольника A1BC1 H - точка пересечения высот (ну двух-то точно :) - A1M и C1K), поэтому A1C1 перпендикулярно BH, и, следовательно, параллельно AC; то есть ∠BAC = ∠BA1C; Точки K и M лежат на окружности, построенной на A1C1, как на диаметре, поэтому ∠BA1C + ∠KMC = 180°; как противоположные углы вписанного четырехугольника. Или, что же самое, ∠BA1C = ∠BMK; следовательно ∠BAC = ∠BMK; и треугольники ABC и BMK имеют равные углы. То есть, подобны.
Следствие, которое важнее задачи :) Четырехугольник AKMC - вписанный. То есть через эти 4 точки можно провести окружность.
Дополнение. Тривиальный решения тут такой. ∠KHB = ∠A; ∠MHB = ∠C; BK = BH*sin(A) = BC*sin(C)*sin(A); BM = BH*sin(C) = BA*sin(A)*sin(C); То есть у треугольников ABC и MBK угол B общий, и стороны общего угла пропорциональны BM/BA = BK/BC = sin(A)*sin(B); значит треугольники подобны. коэффициент подобия sin(A)*sin(C), что тоже полезное следствие.
Я продлеваю перпендикуляры HK и HM за точку H до пересечения с BA в точке A1 и BC в точке C1 (ну, точки лежат на продолжениях... из за того, что ∠ABC острый, эти точки есть и лежат где положено :) )
Для треугольника A1BC1 H - точка пересечения высот (ну двух-то точно :) - A1M и C1K), поэтому A1C1 перпендикулярно BH, и, следовательно, параллельно AC;
то есть ∠BAC = ∠BA1C;
Точки K и M лежат на окружности, построенной на A1C1, как на диаметре, поэтому
∠BA1C + ∠KMC = 180°; как противоположные углы вписанного четырехугольника. Или, что же самое, ∠BA1C = ∠BMK;
следовательно ∠BAC = ∠BMK;
и треугольники ABC и BMK имеют равные углы. То есть, подобны.
Следствие, которое важнее задачи :) Четырехугольник AKMC - вписанный. То есть через эти 4 точки можно провести окружность.
Дополнение. Тривиальный решения тут такой.
∠KHB = ∠A; ∠MHB = ∠C;
BK = BH*sin(A) = BC*sin(C)*sin(A);
BM = BH*sin(C) = BA*sin(A)*sin(C);
То есть у треугольников ABC и MBK угол B общий, и стороны общего угла пропорциональны BM/BA = BK/BC = sin(A)*sin(B); значит треугольники подобны.
коэффициент подобия sin(A)*sin(C), что тоже полезное следствие.
Объяснение:
7)
ВD=AB√2=4√2 ед.
ВО=R=BD/2=4√2/2=2√2 ед.
S(ABCD)=AB²=4²=16 ед²
Sкр=πR²=BO²*π=(2√2)²π=8π ед².
Sз.ф.=S(ABCD)-Sкр=16-8π
ответ: 16-8π ед²
Обозначение: Sкр-площадь круга; Sз.ф.-площадь закращенной фигуры.
8)
S(ABCD)=AB*BC=2*6=12 ед²
R=BA/2=2/2=1ед радиус полукруга
Sп.кр.=πR²/2=1²π/2=π/2 ед² площадь полукруга
r=1ед, по условию радиус четвертой части круга.
Sч.кр=πr²/4=1²π/4=π/4 ед² площадь 1/4 круга
Sз.ф.=S(ABCD)-Sп.кр-Sч.кр=12-π/2-π/4=
=12-(π/2+π/4)=12-(2π/4+π/4)=12-3π/4=
=48/4-3π/4=(48-3π)/4 ед²
ответ: (48-3π)/4 ед²
Обозначение:
Sп.кр- площадь полукруга
Sч.кр- площадь части круга (1/4)
Sз.ф- площадь закрашенной части.
9)
АВ=2r=2*2=4ед.
S(ABCD)=AB²=4²=16 ед²
Sкр=πr²=π*2²=4π ед²
Sз.ф.=S(ABCD)-Sкр=16-4π ед²
ответ: 16-4π ед²
10)
S(ABCD)=AB*BC=12*5=60 ед²
∆АВD- прямоугольный треугольник
По теореме Пифагора
ВD=√(AB²+AD²)=√(5²+12²)=13 ед.
R=(AB+AD-BD)/2=(12+5-13)/2=4/2=2 ед.
Sкр=πR²=2²π=4π ед²
r=3ед, по условию.
Sч.кр=πr²/4=3²π/4=9π/4=2,25π ед²
Sз.ф=S(ABCD)-Sкр-Sч.кр=60-4π-2,25π=
=60-6,25π ед²
ответ: 60-6,25π ед²