Итак, больший катет равен Х (почти равен гипотенузе), гипотенуза (Х+1), второй катет равен Y. тогда имеем систему двух уравнений с двумя неизвестными - катетами: X+(X+1)+Y=30 (1) и X²+Y²=(X+1)² (2) Из (1): Y=29-2X. Подставим это выражение в (2): X²+29²-116X+4X²=X²+2X+1, отсюда 2Х²-59Х+420=0 - квадратное уравнение с дискриминантом D=√(59²-8*420)=11. Тогда Х1=17,5 (не удовлетворяет условию Y=29-2X) и Х2=12. ответ: больший катет равен 12.
Проверка: катет=12, второй катет =(29-2*12)=5 и гипотенуза =13. И по Пифагору: 12²+5²=13².
1) DC=AC-AD=8-6=2 см. Угол С общий для треугольников АВС и DВС, стороны, содержащие этот угол, пропорциональны (АС:ВС=ВС:DC=2). Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны. Из подобия следует АВ:ВD=2, ⇒ BD=10:2=5 см
———————————
2) Обозначим К точку пересечения прямой из т.D с ВС. По условию DK||АС, тогда стороны АВ и ВС треугольника являются секущими для них. ⇒ соответственные углы при DK и АС равны, треугольники АВС и DBK подобны по равным углам. Из подобия следует АВ:DB=ВC:ВK. ВD=AB-AD=10. ⇒ 14:10=21:ВК ⇒ ВК=210:14=15 см. Поэтому КС=21-15=6 см. Сторона ВС делится на отрезки 15 см и 6 см.
тогда имеем систему двух уравнений с двумя неизвестными - катетами:
X+(X+1)+Y=30 (1) и X²+Y²=(X+1)² (2)
Из (1): Y=29-2X. Подставим это выражение в (2):
X²+29²-116X+4X²=X²+2X+1, отсюда
2Х²-59Х+420=0 - квадратное уравнение с дискриминантом
D=√(59²-8*420)=11.
Тогда Х1=17,5 (не удовлетворяет условию Y=29-2X) и
Х2=12.
ответ: больший катет равен 12.
Проверка: катет=12, второй катет =(29-2*12)=5 и гипотенуза =13.
И по Пифагору: 12²+5²=13².
1) DC=AC-AD=8-6=2 см. Угол С общий для треугольников АВС и DВС, стороны, содержащие этот угол, пропорциональны (АС:ВС=ВС:DC=2). Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны. Из подобия следует АВ:ВD=2, ⇒ BD=10:2=5 см
———————————
2) Обозначим К точку пересечения прямой из т.D с ВС. По условию DK||АС, тогда стороны АВ и ВС треугольника являются секущими для них. ⇒ соответственные углы при DK и АС равны, треугольники АВС и DBK подобны по равным углам. Из подобия следует АВ:DB=ВC:ВK. ВD=AB-AD=10. ⇒ 14:10=21:ВК ⇒ ВК=210:14=15 см. Поэтому КС=21-15=6 см. Сторона ВС делится на отрезки 15 см и 6 см.