Побудувати трикутник а1в1с1 симетричний трикутнику авс відносно осі ординат , якщо а(1; -6) в(3; -1) с(5; 4). записати координати вершин трикутника а1в1с1 та знайти довжину відрізка аа1
В ромбе АВСD угол А=30°, следовательно <В =150° (сумма углов ромба, прилежащих к одной стороне, равна 180°). Это тупой угол и высота из вершины угла А, проведенная к прямой CD, опустится на продолжение стороны CD, в точку Н. В треугольнике AHD угол ADH =30°, как смежный с углом D ромба. Следовательно, катет АН равен половине гипотенузы AD (лежит против угла 30°). АН=12/2 =6. В прямоугольном треугольнике МАН (отрезок МА перпендикулярен плоскости АВСD, значит <MAH=90°) гипотенуза МН по Пифагору равна √(6²+6²)= 6√2. Эта гипотенуза и есть искомое расстояние, так как МН перпендикулярна CD по теореме о трех перпендикулярах.
В ромбе АВСD угол А=30°, следовательно <В =150° (сумма углов ромба, прилежащих к одной стороне, равна 180°). Это тупой угол и высота из вершины угла А, проведенная к прямой CD, опустится на продолжение стороны CD, в точку Н. В треугольнике AHD угол ADH =30°, как смежный с углом D ромба. Следовательно, катет АН равен половине гипотенузы AD (лежит против угла 30°). АН=12/2 =6. В прямоугольном треугольнике МАН (отрезок МА перпендикулярен плоскости АВСD, значит <MAH=90°) гипотенуза МН по Пифагору равна √(6²+6²)= 6√2. Эта гипотенуза и есть искомое расстояние, так как МН перпендикулярна CD по теореме о трех перпендикулярах.
ответ: 6√2 ед.
а) сначала мысленно разделим фигуру на две части.
получаем две фигуры: квадрат (S₁) и прямоугольник (S₂), общая площадь - S
Дано:
а₁ = 8 м
а₂ = 5 м
b₁ = 8 м
b₂ = 3 м
Найти: S.
1) S = S₁ + S₂
2) S₁ = a₁b₁
3) S₁ = 8*8 = 64 (м²)
4) S₂ = a₂b₂
5) S₂ = 5*3 = 15 (м²)
6) S = 64+15 = 79 (м²) - площадь всей фигуры
ответ: S = 79 м²
б) сначала найдем площадь большей фигуры, затем меньшей и вычтем.
Дано:
а₁ = 40 см
а₂ = 14 см
b₁ = 56 см
b₂ = 20 см
Найти: S
1) S = S₁ + S₂
2) S₁ = a₁b₁
3) S₁ = 40*56 = 2240 (см²)
4) S₂ = a₂b₂
5) S₂ = 14*20 = 280 (см²)
6) S = 2240+280 = 2520 (см²) - площадь всей фигуры
ответ: S = 2520 см²