Через две точки можно провести прямую линию и притом только одну.
Аксиома 2
Если две точки прямой принадлежат плоскости, то и каждая точка этой прямой принадлежит плоскости.
Аксиома 3
Отрезок прямой короче всякой другой линии (ломаной или кривой), соединяющей его концы.
Расстояние между двумя точками измеряется по прямой линии. В геометрии используются еще и такие аксиомы, которые уже применялись в арифметике и алгебре (сформулируем их для произвольных величин A, B и C):
См. рисунок в файле решать можно разными например, "в лоб" - там вычислять нужно 1) по теореме Пифагора (r+6)²+(r+20)²=(6+20)² Находим из этого уравнения r, потом катеты, потом площадь. Долго и муторно 2) метод "оптимальный" S=(r+6)*(r+20)/2=(r²+26r+120)/2 - обращаем внимание на r²+26r
(r+6)²+(r+20)²=(6+20)² раскрывая скобки и приводя, получаем r²+26r=120 эти 120 подставляем в S S=(r²+26r+120)/2 =(120+120)/2=12
Ну и третий - самый простой и "для ленивых" (доказывается легко) Если точка касания вписанн. окр. делит гипотенузу на отрезки, то площадь треугольника равна произведению длин этих отрезков., т.е 6*20=120
Аксиома 1
Через две точки можно провести прямую линию и притом только одну.
Аксиома 2
Если две точки прямой принадлежат плоскости, то и каждая точка этой прямой принадлежит плоскости.
Аксиома 3
Отрезок прямой короче всякой другой линии (ломаной или кривой), соединяющей его концы.
Расстояние между двумя точками измеряется по прямой линии. В геометрии используются еще и такие аксиомы, которые уже применялись в арифметике и алгебре (сформулируем их для произвольных величин A, B и C):
Аксиома 4
Если A=B и B=C, то A=C.
Аксиома 5
Если A=B, то A+C=B+C и A-C=B-C.
Объяснение:
здесь ответы
решать можно разными
например, "в лоб" - там вычислять нужно
1) по теореме Пифагора
(r+6)²+(r+20)²=(6+20)² Находим из этого уравнения r, потом катеты, потом площадь. Долго и муторно
2) метод "оптимальный"
S=(r+6)*(r+20)/2=(r²+26r+120)/2 - обращаем внимание на r²+26r
(r+6)²+(r+20)²=(6+20)² раскрывая скобки и приводя, получаем
r²+26r=120
эти 120 подставляем в S
S=(r²+26r+120)/2 =(120+120)/2=12
Ну и третий - самый простой и "для ленивых" (доказывается легко)
Если точка касания вписанн. окр. делит гипотенузу на отрезки, то площадь треугольника равна произведению длин этих отрезков., т.е 6*20=120